Simulation of particles motion in mass spectrometer using parallel particle-in-cell code
Matematičeskoe modelirovanie, Tome 21 (2009) no. 6, pp. 103-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

At present, mass spectrometers are the main instruments used in proteomics. In such studies, the accuracy of measuring biomolecules masses is affected by Coulombic interaction of analyte ions with each other and with ion trap boundaries. The research is aimed at the development of three-dimensional code to simulate interacting particles dynamics in a Fourier transform ion cyclotron resonance mass spectrometer. The mathematical formulation and the sketch of the problem solution method are given. The analysis of parallel program speed-up is accomplished as well. The simulations were performed on IBM eServer pSeries 690 Regatta supercomputer (Faculty of CMC, Lomonosov MSU).
@article{MM_2009_21_6_a8,
     author = {A. V. Pozdneev},
     title = {Simulation of particles motion in mass spectrometer using parallel particle-in-cell code},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--109},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_6_a8/}
}
TY  - JOUR
AU  - A. V. Pozdneev
TI  - Simulation of particles motion in mass spectrometer using parallel particle-in-cell code
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 103
EP  - 109
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_6_a8/
LA  - ru
ID  - MM_2009_21_6_a8
ER  - 
%0 Journal Article
%A A. V. Pozdneev
%T Simulation of particles motion in mass spectrometer using parallel particle-in-cell code
%J Matematičeskoe modelirovanie
%D 2009
%P 103-109
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_6_a8/
%G ru
%F MM_2009_21_6_a8
A. V. Pozdneev. Simulation of particles motion in mass spectrometer using parallel particle-in-cell code. Matematičeskoe modelirovanie, Tome 21 (2009) no. 6, pp. 103-109. http://geodesic.mathdoc.fr/item/MM_2009_21_6_a8/

[1] Aebersold R., Mann M., “Mass spectrometry-based proteomics”, Nature, 422 (2003), 198–207 | DOI

[2] Marshall A. G., Hendrickson C. L., Jackson G. S., “Fourier transform ion cyclotron resonance mass spectrometry: a primer”, Mass Spectrom. Rev., 17 (1998), 1–35 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] Zhang L.-K., Rempel D., Pramanik B. N., Gross M. L., “Accurate mass measurements by Fourier transform mass spectrometry”, Mass Spectrom. Rev., 24 (2005), 286–309 | DOI

[4] Wong R. L., Amster I. J., “Experimental evidence for space-charge effects between ions of the same mass-to-charge in Fourier-transform ion cyclotron resonance mass spectrometry”, Int. J. Mass Spectrom., 265 (2007), 99–105 | DOI

[5] Dahl D. A., “SIMION for the personal computer in reflection”, Int. J. Mass Spectrom., 200 (2000), 3–25 | DOI

[6] Forbes M. W., Sharifi M., Croley T., Lausevic Z., March R. E., “Simulation of ion trajectories in a quadrupole ion trap: a comparison of three simulation programs”, J. Mass Spectrom., 34 (1999), 1219–1239 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] Wu G. et al., “Ion trajectory simulation for electrode configurations with arbitrary geometries”, J. Am. Soc. Mass Spectrom., 17 (2006), 1216–1228 | DOI

[8] Miluchihin N. V., Miura K., Inoue M., “Application of a parallel computer to simulation of an ion trajectories in an ion cyclotron resonance spectrometer”, Rapid Commun. Mass Spectrom., 7 (1993), 966–970 | DOI

[9] Mitchell D.W., “Realistic simulation of the ion cyclotron resonance mass spectrometer using a distributed three-dimensional particle-in-cell code”, J. Am. Soc. Mass Spectrom., 10 (1999), 136–152 | DOI

[10] Khokni R., Istvud Dzh., Chislennoe modelirovanie metodom chastits, Mir, M., 1987

[11] Pozdneev A. V., “Chislennoe modelirovanie evolyutsii ionnykh oblakov v mass-spektrometre metodom chastits v yacheike”, Vestnik Moskovskogo Universiteta. Ser. 15. Vychislitelnaya matematika i kibernetika, 2008, no. 3, 11–19 | Zbl

[12] Nikolaev E. N., Heeren R. M. A., Popov A. M., Pozdneev A. V., Chingin K. S., “Realistic modeling of ion cloud motion in a Fourier transform ion cyclotron resonance cell by use of a particle-in-cell approach”, Rapid Commun. Mass Spectrom., 21:22 (2007), 3527–3546 | DOI

[13] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[14] Frigo M., Johnson S. J., “The design and implementation of FFTW3”, Proc. IEEE, 93 (2005), 216–231 | DOI