Study of shallow water flows over an arbitrary bed profile in the presence of external force
Matematičeskoe modelirovanie, Tome 21 (2009) no. 6, pp. 41-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical method for studying hydrodynamic flows over an arbitrary bed profile in the presence of external force is proposed in this paper. The arbitrary bed profile is approximated by a piecewise constant function separating it into a finite number of domains with a stepwise boundary. For implementing the mentioned method and to take into account the external force effect the quasi-two-layer model of hydrodynamic flows over a stepwise boundary is used with regard to features of flow near the step. Based on the proposed algorithm, the numerical simulation of various physical phenomena, such as a breakdown of the rectangular fluid column over an inclined plane, the large-scale motion of fluid in the gravitational field in the presence of Coriolis force over an underlying mountain-like surface, is performed. Computations are made for two dimensional dam-break problem on slope and good agreement with laboratory experiments is obtained.
@article{MM_2009_21_6_a3,
     author = {K. V. Karelsky and A. S. Petrosyan and A. G. Slavin},
     title = {Study of shallow water flows over an arbitrary bed profile in the presence of external force},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {41--58},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_6_a3/}
}
TY  - JOUR
AU  - K. V. Karelsky
AU  - A. S. Petrosyan
AU  - A. G. Slavin
TI  - Study of shallow water flows over an arbitrary bed profile in the presence of external force
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 41
EP  - 58
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_6_a3/
LA  - ru
ID  - MM_2009_21_6_a3
ER  - 
%0 Journal Article
%A K. V. Karelsky
%A A. S. Petrosyan
%A A. G. Slavin
%T Study of shallow water flows over an arbitrary bed profile in the presence of external force
%J Matematičeskoe modelirovanie
%D 2009
%P 41-58
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_6_a3/
%G ru
%F MM_2009_21_6_a3
K. V. Karelsky; A. S. Petrosyan; A. G. Slavin. Study of shallow water flows over an arbitrary bed profile in the presence of external force. Matematičeskoe modelirovanie, Tome 21 (2009) no. 6, pp. 41-58. http://geodesic.mathdoc.fr/item/MM_2009_21_6_a3/

[1] Stoker J. J., Water Waves: The Mathematical Theory with Applications, Interscience, New York, 1957 | MR | Zbl

[2] Voltsinger N. E., Pyaskovskii R. V., Teoriya melkoi vody, Gidrometeoizdat, L., 1977, 207 pp.

[3] Marchuk A. G., Chubarov L. B., Shokin Yu. I., Chislennoe modelirovanie voln tsunami, Nauka, Novosibirsk, 1983 | Zbl

[4] Marchuk G. I., Chislennoe reshenie zadach dinamiki atmosfery i okeana, Gidrometeoizdat, L., 1974, 304 pp.

[5] Marchuk G. I., Kagan B. A., Dinamika okeanicheskikh prilivov, Gidrometeoizdat, L., 1983, 359 pp.

[6] Belolipetskii V. M., Shokin Yu. I., Matematicheskie modeli v zadachakh okhrany okruzhayuschei sredy, izd-vo “INFOLIO-press”, Novosibirsk, 1997, 240 pp.

[7] Krukier L. A., Muratova G. V., “Ispolzovanie metoda konechnykh raznostei dlya reshenii uravnenii melkoi vody”, Matematicheskoe modelirovanie, 13:3 (2001), 57–60 | MR | Zbl

[8] Chapman S., Cowling T. G., The mathematical theory of non-uniform gases, Cambridge Univ. Press, Cambridge, 1952 | Zbl

[9] Bermudez A., Vazquez M. E., “Upwind methods for hyperbolic conservation laws with source terms”, Comput. Fluids, 23:8 (1994), 1049–1071 | DOI | MR | Zbl

[10] Pares C., Castro M., “On the well-balanced property of Roe's method for nonconservative hyperbolic systems. Applications to shallow water systems”, ESAIM: M2AN, 38 (2004), 821–852 | DOI | MR | Zbl

[11] Vazquez-Cendon M. E., “Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry”, J. Comput. Phys., 148 (1999), 497–526 | DOI | MR | Zbl

[12] Cea L., Vazquez-Cendon M. E., Puertas J., “Depth Averaged Modelling of Turbulent Shallow Water Flow with Wet-Dry Fronts”, Arch. Comput. Methods Eng., 14 (2007), 303–341 | DOI | MR | Zbl

[13] Cea L., Vazquez-Cendon M. E., Puertas J., Pena L., “Numerical treatment of turbulent and mass source terms in the shallow water equations for channels with irregular section”, European Congress on Computational Methods in Applied Sciences and Engineering, (ECCOMAS), 2004

[14] Castro M., Gallardo J. M, Pares C., “High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow water systems”, Math. Comput., 75 (2006), 1103–1134 | DOI | MR | Zbl

[15] Castro M. J., Garcia J. A., Gonzalez-Vida J. M., Macias J., Pares C., Vazquez-Cendon M. E., “Numerical simulation of two-layer shallow water flows through channels with irregular geometry”, J. Comput. Phys., 195 (2004), 202–235 | DOI | MR | Zbl

[16] LeVeque R. J., “Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm”, J. Comput. Phys., 146 (1998), 346–365 | DOI | MR

[17] LeVeque R. J., “Wave-propagation algorithms for multidimensional hyperbolic systems”, J. Comput. Phys., 131 (1998), 327–353 | DOI | MR

[18] Belikov V. V., Semenov A. Yu., “Chislennyi metod raspada razryva dlya resheniya uravnenii teorii melkoi vody”, Zhurn. vychisl. matem. i matem. fiz., 37:8 (1997), 1006–1019 | MR | Zbl

[19] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[20] Audusse E., Bouchut F., Bristeau M.-O., Klein R., Perthame B., “A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows”, SIAM J. Sci. Comp., 25:6 (2004), 2050–2065 | DOI | MR | Zbl

[21] Bouchut F., Le Sommer J., Zeitlin V., “Frontal geostrophic adjustment and nonlinear-wave phenomena in one dimensional rotating shallow water. Part 2: high-resolution numerical simulations”, J. Fluid Mech., 514 (2004), 35–63 | DOI | MR | Zbl

[22] Reznik G. M., Zeitlin V., Ben Jelloul M., “Nonlinear theory of geostrophic adjustment. Part 1. Rotating shallow-water model”, J. Fluid Mech., 445 (2001), 93–120 | DOI | MR | Zbl

[23] Kuo A. C., Polvani L. M., “Time-dependent fully nonlinear geostrophic adjustment”, J. Phys. Oceanogr., 27 (1997), 1614–1634 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[24] George D. L., “Augmented Riemann Solvers for the Shallow Water Equations over Variable Topography with Steady States and Inundation”, J. Comput. Phys., 227:6 (2007), 3089–3113 | DOI | MR

[25] George D. L., Finite volume methods and adaptive refinement for tsunami propagation and inundation, PhD thesis, University of Washington, 2006

[26] Zhou J. G., Causon D. M., Mingham C. G., Ingram D. M., “The surface gradient method for the treatment of source terms in the shallow water equations”, J. Comput. Phys., 168 (2001), 1–25 | DOI | MR | Zbl

[27] Hubbard M. E., Garcia-Navarro P., “Flux difference splitting and the balancing of source terms and flux gradients”, J. Comput. Phys., 165 (2001), 89–125 | DOI | MR

[28] Vignoli G., Titarev V. A., Toro E. F., “ADER schemes for the shallow water equations in channel with irregular bottom elevation”, J. Comput. Phys., 227:4 (2007), 2463–2480 | DOI | MR

[29] Alcrudo F., Benkhaldoun F., “Exact solutions to the Riemann problem of the shallow water equations with a bottom step”, Comput. Fluids, 30 (2001), 643–671 | DOI | MR | Zbl

[30] Bernetti R., Titarev V. A., Toro E. F., “Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry”, J. Comput. Phys., 227:6 (2007), 3212–3243 | DOI | MR

[31] Alcrudo F., Garcia-Navarro P., “A high resolution Godunov-type scheme in finite volumes for the 2D shallow water equation”, Int. J. Numer. Meth. Fluids, 16 (1993), 489–505 | DOI | Zbl

[32] Audusse E., Bristeau F., “A well-balanced positivity preserving “second-order” scheme for shallow water flows on unstructured meshes”, J. Comput. Phys., 206 (2005), 311–333 | DOI | MR | Zbl

[33] Ben Khaldoun F., Elmahi I., Said M., “Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes”, J. Comput. Phys., 226 (2007), 180–203 | DOI | MR | Zbl

[34] Caleffi V., Valiani A., Bernini A., “Fourth-order balanced source term treatment in central WENO schemes for shallow water equations”, J. Comput. Phys., 218 (2006), 228–245 | DOI | MR | Zbl

[35] Gallouet T., Herard J. M., Seguin N., “Some approximate Godunov schemes to compute shallow-water equations with topography”, Comput. Fluids, 32 (2003), 479–513 | DOI | MR | Zbl

[36] Gosse L., “A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms”, Comput. Math. Appl., 39 (2000), 135–159 | DOI | MR | Zbl

[37] Greenberg J. M, Leroux A.-Y., “A well-balanced scheme for the numerical processing of source terms in hyperbolic equations”, SIAM J. Numer. Anal., 33 (1996), 1–16 | DOI | MR | Zbl

[38] Guinot V., “An approximate two-dimensional Riemann solver for hyperbolic systems of conservation laws”, J. Comput. Phys., 205 (2005), 292–314 | DOI | MR | Zbl

[39] Hu K., Mingham C. G, Causon D. M., “Numerical simulation of wave overtopping of coastal structures using the non-linear shallow water equations”, Coastal Engineering, 41 (2000), 433–465 | DOI

[40] Toro E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 2nd ed., Springer-Verlag, Berlin, 1999 | MR

[41] Zoppou C., Roberts S., “Numerical solution of the two-dimensional unsteady dam break”, Appl. Math. Model., 4 (2000), 457–475 | DOI

[42] Karelskii K. V., Petrosyan A. S., “Zadacha o statsionarnom obtekanii stupenki v priblizhenii melkoi vody”, Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 2006, no. 1, 15–24 | MR

[43] Karelsky K. V, Petrosyan A. S., “Particular solutions and Riemann problem for modified shallow water equations”, Fluid Dynamics Research, 38 (2006), 339–358 | DOI | MR | Zbl

[44] Karelskii K. V, Petrosyan A. S., Slavin A. G., “Transformatsiya razryva dlya potokov melkoi vody na skachke”, Sbornik trudov mezhdunarodnoi konferentsii MSS-04 “Transformatsiya voln, kogerentnye struktury i turbulentnost”, M., 2004, 111–116

[45] Karelskii K. V, Petrosyan A. S., Slavin A. G., Chislennoe modelirovanie gidrodinamicheskikh techenii nad proizvolnym profilem dna v ramkakh priblizheniya kvazidvukhsloinoi melkoi vody, Rotaprint, IKI RAN, M., 2006, 51 pp.

[46] Karelsky K. V., Petrosyan A. S., Slavin A. G., “Quazi-two-layer model for numerical analysis shallow water flows on step”, Russian journal of Numerical Analysis and Mathematical modeling, 21:6 (2006), 539–559 | DOI | MR | Zbl

[47] Karelsky K. V., Petrosyan A. S., Slavin A. G., “Numerical simulation of flows of a heavy nonviscous fluid with a free surface in the gravity field over a bed surface with an arbitrary profile”, Russian journal of Numerical Analysis and Mathematical modeling, 22:6 (2007), 543–565 | DOI | MR | Zbl

[48] Slavin A. G., Karelskii K. V, Petrosyan A. C., “Kvazidvukhsloinaya model dlya potokov melkoi vody nad stupenchatoi granitsei”, Trudy XLVII nauchnoi konferentsii MFTI. Chast VIII. Fizika i energetika, M., 2004, 30–32

[49] Vreugdenhil C. B., Numerical methods for shallow-water flow, Kluwer, Dordrecht, 1994

[50] Karelsky K. V., Papkov V. V., Petrosyan A. S., “The initial discontinuity decay problem for shallow water equations on slopes”, Phys. Let. A, 271 (2000), 349–357 | DOI | MR | Zbl

[51] Dolzhanskii F. V., Lektsii po geofizicheskoi gidrodinamike, IVM RAN, M., 2006, ISBN 5-901854-08-X

[52] Fraccarollo L., Toro E., “Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems”, Journal of hydraulic research, 33:6 (1995), 843–863