Computer simulation of three-body quantum mechanics in quasiclassical limit using collective behavior method
Matematičeskoe modelirovanie, Tome 21 (2009) no. 5, pp. 83-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the direct numerical experiment three-body quantum system was studied in quasiclassical limit. The system represents $XYX$-system, where $X$ and $Y$ denote light and heavy particle correspondingly. The new common algorithm for studying few-body quantum systems (collective behavior method [1]–[4]) was used. Program complex which develops this algorithm was described. Theoretical model which can be considered as base for this algorithm in the case of three-particle systems was proposed. The evolutions of symmetric and anti-symmetric initial vibrational state were studied. The various distribution functions of angles and distances was obtained.
@article{MM_2009_21_5_a8,
     author = {K. S. Arakelov},
     title = {Computer simulation of three-body quantum mechanics in quasiclassical limit using collective behavior method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--91},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_5_a8/}
}
TY  - JOUR
AU  - K. S. Arakelov
TI  - Computer simulation of three-body quantum mechanics in quasiclassical limit using collective behavior method
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 83
EP  - 91
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_5_a8/
LA  - ru
ID  - MM_2009_21_5_a8
ER  - 
%0 Journal Article
%A K. S. Arakelov
%T Computer simulation of three-body quantum mechanics in quasiclassical limit using collective behavior method
%J Matematičeskoe modelirovanie
%D 2009
%P 83-91
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_5_a8/
%G ru
%F MM_2009_21_5_a8
K. S. Arakelov. Computer simulation of three-body quantum mechanics in quasiclassical limit using collective behavior method. Matematičeskoe modelirovanie, Tome 21 (2009) no. 5, pp. 83-91. http://geodesic.mathdoc.fr/item/MM_2009_21_5_a8/

[1] Y. Ozhigov., “Genetic Simulation of Quantum Dynamics by the Principle of Quantum State Selection”, Quantum Computers and Computing, 7:1 (2007), 27–47

[2] Yu. I. Ozhigov, “Modelirovanie kvantovoi dinamiki cherez klassicheskoe kollektivnoe povedenie”, Mikroelektronika, 36:3 (2007), 222–235

[3] K. Arakelov, Y. Ozhigov, “Numerical Method of Entangled State Selection in Association of Molecules”, Quantum Computers and Computing, 7:1 (2007), 67–80

[4] K. S. Arakelov, “Chislennoe modelirovanie dvukhchastichnogo rezonansnogo rasseyaniya s obrazovaniem molekulyarnogo iona”, Mikroelektronika, 37:6 (2008), 1–9

[5] A. Kh. Vorobev, Lektsii po teorii elementarnogo akta khimicheskikh reaktsii v kondensirovannoi faze, Khim. fak. MGU, M., 2000

[6] V. B. Belyaev, Lektsii po teorii malochastichnykh sistem, Energoatomizdat, M., 1986, 128 pp.

[7] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985, 399 pp. | MR

[8] E. A. Kolganova, A. K. Motovilov, W. Sandhas, “Scattering length for helium atom-diatom collision”, Few-Body Systems, 38:2–4 (2006), 205–208 | DOI

[9] C. Zalka, Efficient Simulation of Quantum Systems by Quantum Computers, lanl e-print arXiv: quant-ph/9603026 | MR

[10] S. Wiesner, Simulations of Many-Body Quantum Systems by a Quantum Computer, lanl e-print arXiv: quant-ph/9603028

[11] R. Radzharaman, Solitony i instantony v kvantovoi teorii polya, Mir, M., 1985, 414 pp.

[12] I. Sh. Averbukh, N. F. Perelman, “Dinamika volnovykh paketov vysokovozbuzhdennykh sostoyanii atomov i molekul”, UFN, 42:7 (1991), 41–81

[13] A. A. Ovchinnikov, N. S. Erikhman, “O lokalizatsii kolebatelnoi energii pri vysokikh urovnyakh vozbuzhdeniya. Kolebatelnye eksitony”, UFN, 138:10 (1982), 289–320

[14] S. V. Drozdov, A. A. Vostrikov, “Dipolnyi moment klasterov vody i parnikovyi effekt”, Pisma v ZhTF, 26:9 (2000), 81–86