Mathematical model of a~heat transfer in fractal structure medium
Matematičeskoe modelirovanie, Tome 21 (2009) no. 5, pp. 55-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

There was considered mathematical model of a heat transfer. A theorem of existence and uniqueness of solution of boundary-value for the generalized Caputo on a half-line was proved. Implicit difference scheme of task solution of heat transfer with a derived fractional-order through the time and a space variable were constructed. Criterions of stability of these implicit difference schemes were proved.
@article{MM_2009_21_5_a4,
     author = {V. D. Beybalaev},
     title = {Mathematical model of a~heat transfer in fractal structure medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_5_a4/}
}
TY  - JOUR
AU  - V. D. Beybalaev
TI  - Mathematical model of a~heat transfer in fractal structure medium
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 55
EP  - 62
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_5_a4/
LA  - ru
ID  - MM_2009_21_5_a4
ER  - 
%0 Journal Article
%A V. D. Beybalaev
%T Mathematical model of a~heat transfer in fractal structure medium
%J Matematičeskoe modelirovanie
%D 2009
%P 55-62
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_5_a4/
%G ru
%F MM_2009_21_5_a4
V. D. Beybalaev. Mathematical model of a~heat transfer in fractal structure medium. Matematičeskoe modelirovanie, Tome 21 (2009) no. 5, pp. 55-62. http://geodesic.mathdoc.fr/item/MM_2009_21_5_a4/

[1] Nigmatullin R. R., Phys. Stat. Solidi (b), 133 (1986), 425 | DOI

[2] Nigmatullin R. R., “Ibid”, Phys. Stat. Solidi (b), 133 (1986), 713 | DOI

[3] Babenko Yu. I., Teplomassoobmen. Metody rascheta teplovykh i diffuzionnykh potokov, Khimiya, L., 1986, 144 pp.

[4] Nigmatulin R. R., TMF, 90:3 (1992), 354 | MR | Zbl

[5] Sukhanov A. D., Timashev S. F., Zhurnal fizicheskoi khimii, 72:11 (1998), 2073

[6] Ivanova V. S., Balakin A. S., Bunin I. Zh., Oksogoev A. A., Sinergetika i fraktaly v materialovedenii, Nauka, M., 1994, 383 pp. | MR | Zbl

[7] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i Tekhnika, Minsk, 1987, 498 pp. | MR | Zbl

[8] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977, 465 pp. | MR

[9] Gekieva S. Kh., “Kraevaya zadacha dlya obobschennogo uravneniya s drobnoi proizvodnoi po polubeskonechnoi oblasti”, Izvestiya KBNTs RAN, 2002, no. 1(8), 18–22

[10] Meilanov R. P., Nazaraliev M. A., Beibalaev V. D., Shakhbanova M. R., “Uravnenie parabolicheskogo tipa s differentsirovaniem drobnogo poryadka”, Vestnik DNTs RAN (Makhachkala), 2006, 11–15

[11] Isaacson E., Keller H. B., Analysis of Numerical Methods, Wiley, New York, 1966 | MR | Zbl

[12] Koltsova E. M., Vasilenko V. A., Tarasov V. V., “Chislennye metody resheniya uravnenii perenosa vo fraktalnykh sredakh”, ZhFKh, 2000

[13] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Yurko Yu. I., Nekotorye osobennosti vychislitelnykh algoritmov dlya uravneniya drobnoi diffuzii, preprint No IBRAE-2002-01, IBRAE RAN, M., 2002, 57 pp.

[14] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Chislennye metody resheniya uravneniya drobnoi diffuzii v odnomernom sluchae, preprint No IBRAE-2002-10, IBRAE RAN, M., 2002, 35 pp.

[15] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Yurko Yu. I., “Pryamye zadachi neklassicheskogo perenosa radionuklidov v geologicheskikh formatsiyakh”, Izvestiya RAN. Energetika, 2004, no. 4, 121–130

[16] Goloviznin V. M., Korotkin I. A., “Metody chislennykh reshenii nekotorykh odnomernykh uravnenii s drobnymi proizvodnymi”, Differentsialnye uravneniya, 42:7 (2006), 907–913 | MR | Zbl

[17] Tadjeran Charles, Meerschaert Mark M., Scheffler Hana-Peter, “A second-order accurate numerical approximation for the fractional diffusion equation”, Journal of Computational Physics, 213 (2006), 205–213 | DOI | MR | Zbl

[18] Lynch V. E., Carreras B. A., del-Castill-Negrete D., Ferreira-Mejias K. M., Hicks H. R., “Numerical methods for the solution of partial differential equations of fractional order”, Journal of Computational Physics, 192 (2003), 406–421 | DOI | MR | Zbl

[19] Liu Q., Liu F., Turner I., Anh V., “Approximation of the Levy–Feller advection-dispersion process by random walk and finite difference method”, Journal of Computational Physics, 222 (2007), 57–70 | DOI | MR | Zbl

[20] Beibalaev V. D., “Chislennyi metod resheniya matematicheskoi modeli teploperenosa v sredakh s fraktalnoi strukturoi”, Fundamentalnye issledovaniya, 2007, no. 12, 249–251