Mathematical model of a~heat transfer in fractal structure medium
Matematičeskoe modelirovanie, Tome 21 (2009) no. 5, pp. 55-62

Voir la notice de l'article provenant de la source Math-Net.Ru

There was considered mathematical model of a heat transfer. A theorem of existence and uniqueness of solution of boundary-value for the generalized Caputo on a half-line was proved. Implicit difference scheme of task solution of heat transfer with a derived fractional-order through the time and a space variable were constructed. Criterions of stability of these implicit difference schemes were proved.
@article{MM_2009_21_5_a4,
     author = {V. D. Beybalaev},
     title = {Mathematical model of a~heat transfer in fractal structure medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_5_a4/}
}
TY  - JOUR
AU  - V. D. Beybalaev
TI  - Mathematical model of a~heat transfer in fractal structure medium
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 55
EP  - 62
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_5_a4/
LA  - ru
ID  - MM_2009_21_5_a4
ER  - 
%0 Journal Article
%A V. D. Beybalaev
%T Mathematical model of a~heat transfer in fractal structure medium
%J Matematičeskoe modelirovanie
%D 2009
%P 55-62
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_5_a4/
%G ru
%F MM_2009_21_5_a4
V. D. Beybalaev. Mathematical model of a~heat transfer in fractal structure medium. Matematičeskoe modelirovanie, Tome 21 (2009) no. 5, pp. 55-62. http://geodesic.mathdoc.fr/item/MM_2009_21_5_a4/