Modelling of relative motion in multi-unit mechanical system with limited control
Matematičeskoe modelirovanie, Tome 21 (2009) no. 5, pp. 41-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to control algorithm development to nullify a relative secular drift due to the Earth oblateness in Formation Flight motion. It is assumed a chief satellite orbit to be circular and its orbit not to be controlled to maintain the formation. Deputy satellite is equipped with a passive magnetic attitude control system with permanent magnet alongwith the principal inertia axis and low-propulsion thruster alongwith the same direction. The investigation how to eliminate the relative secular drift by a limited control is carried out. The limitation consists in a constraint of direction and magnitude of feasible control. In the present work the control to eliminate the relative secular drift is analytically developed. Analytical results are approved by numerical simulation of the satellite motion like the first Russian nanosatellite TNS-0 № 1.
@article{MM_2009_21_5_a3,
     author = {I. E. Zaramenskikh and M. Yu. Ovchinnikov and I. V. Ritus},
     title = {Modelling of relative motion in multi-unit mechanical system with limited control},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_5_a3/}
}
TY  - JOUR
AU  - I. E. Zaramenskikh
AU  - M. Yu. Ovchinnikov
AU  - I. V. Ritus
TI  - Modelling of relative motion in multi-unit mechanical system with limited control
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 41
EP  - 54
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_5_a3/
LA  - ru
ID  - MM_2009_21_5_a3
ER  - 
%0 Journal Article
%A I. E. Zaramenskikh
%A M. Yu. Ovchinnikov
%A I. V. Ritus
%T Modelling of relative motion in multi-unit mechanical system with limited control
%J Matematičeskoe modelirovanie
%D 2009
%P 41-54
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_5_a3/
%G ru
%F MM_2009_21_5_a3
I. E. Zaramenskikh; M. Yu. Ovchinnikov; I. V. Ritus. Modelling of relative motion in multi-unit mechanical system with limited control. Matematičeskoe modelirovanie, Tome 21 (2009) no. 5, pp. 41-54. http://geodesic.mathdoc.fr/item/MM_2009_21_5_a3/

[1] V. A. Sarychev, M. Yu. Ovchinnikov, Magnitnye sistemy orientatsii ISZ, Itogi nauki i tekhn. Ser. Issledovanie kosmicheskogo prostranstva, 23, VINITI, M., 1985, 104 pp.

[2] Yu. M. Urlichich, A. S. Selivanov, Yu. M. Tuchin, O. E. Khromov, I. V. Nikushkin, “Tekhnologicheskii nanosputnik minimalnoi komplektatsii TNS-0”, III Konferentsiya “Mikrotekhnologii v aviatsii i kosmonavtike”, Annotatsii dokladov (Sankt-Peterburg, 8–9 iyunya 2004 g.)

[3] N. V. Kupriyanova, M. Yu. Ovchinnikov, V. I. Penkov, A. S. Selivanov, Passivnaya magnitnaya sistema orientatsii pervogo rossiiskogo nanosputnika TNS-0, Preprint No 46, IPM im. M. V. Keldysha RAN, M., 2005

[4] V. V. Beletskii, Ocherki o dvizhenii kosmicheskikh tel, Nauka, M., 1972, 360 pp.

[5] D. A. Vallado, Fundamentals of Astrodynamics and Applications, With contribution by Wayne D. MacClain, Second Edition, Space Technology Library, Microcosm Press, 2006, 958 pp. | MR

[6] E. Wnuk, J. Golebiewska, “The Relative Motion of Earth Orbiting Satellites”, Celestial Mechanics and Dynamical Astronomy, 91:3–4 (2005), 373–389 | DOI | Zbl

[7] C. Xu, R. Tsoi, N. Sneeuw, “Analysis of $J_2$-Perturbed Relative Orbits for Satellite Formation Flying”, GGSM 2004, IAG Proceedings, 129, eds. Jekeli C., Bastos L., Fernandes J., Springer, 2005, 36–41

[8] D. Izzo, “Formation Flying Linear Modeling”, 5th International Conference on Dynamics and Control of Systems and Structures in Space (Cambridge, UK, July 2002), 283–289

[9] H. Schaub, S. R. Vadali, J. L. Junkins, K. T. Alfriend, “Spacecraft Formation Flying Control Using Mean Orbit Elements”, Journal of the Astronautical Sciences, 48:1 (2000), 69–87

[10] K. T. Alfriend, S. R. Vadali, H. Schaub, “Formation Flying Satellites: Control by an Astrodynamicist”, Celestial Mechanics and Dynamical Astronomy, 81:1–2 (2001), 57–62 | DOI | Zbl

[11] K. D. Kumara, H. C. Bangb, M. J. Tahkb, “Satellite Formation Flying Using Along-track Thrust”, Acta Astronautica, 61:7–8 (2007), 553–564 | DOI

[12] I. E. Zaramenskikh, “Mnozhestvo dostizhimykh traektorii otnositelnogo dvizheniya dvukh sputnikov pri upravlenii vdol vektora magnitnogo polya”, V Nauchno-prakticheskaya konferentsiya “Mikrotekhnologii v aviatsii i kosmonavtike”, Sbornik trudov (Moskva, 17–19 sentyabrya, 2007), 10

[13] G. V. Smirnov, M. Ovchinnikov, A. Guerman, “Use of Solar Radiation Pressure to Maintain a Spatial Satellite Formation”, Academy Transactions Note, Acta Astronautica, 61:6–7 (2007), 724–728 | DOI

[14] H. Schaub, “Relative Orbit Geometry through Classical Orbit Element Differences”, Journal of Guidance, Navigation and Control, 27:5 (2004), 839–848 | DOI

[15] M. F. Reshetnev, A. A. Lebedev, V. A. Bartenev, M. N. Krasilschikov, V. A. Malyshev, V. V. Malyshev, Upravlenie i navigatsiya iskusstvennykh sputnikov Zemli na okolokrugovykh orbitakh, Mashinostroenie, M., 1988, 336 pp.

[16] N. N. Moiseev, Asimptoticheskie metody nelineinoi mekhaniki, Nauka, M., 1981, 400 pp. | MR | Zbl

[17] D. E. Okhotsimskii, Yu. G. Sikharulidze, Osnovy mekhaniki kosmicheskogo poleta, Nauka, M., 1990, 448 pp.

[18] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Uchebnik dlya vuzov, 6-e izd., ispr., M., Nauka, 624 pp. | MR

[19] I. E. Zaramenskikh, M. Yu. Ovchinnikov, I. V. Ritus, Kompensatsiya vliyaniya szhatiya Zemli v otnositelnom dvizhenii formatsii sputnikov s maloi tyagoi zadannogo napravleniya, Preprint No 55, IPM im. M. V. Keldysha RAN, M., 2008, 23 pp.