Numerical simulation of high-speed dynamics of the nonlinear deformation and failure of damaged medium
Matematičeskoe modelirovanie, Tome 21 (2009) no. 4, pp. 79-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

For description nonlinear, depending on time and rate of loading behaviour of polycrystalline materials-metals with initial and appearing in the process of distribution of shock waves microdamages the mathematical model of microplasticity is developed. It is development of model of Afanas'ev–Bessiling, generalized on the account of viscosity and microinhomogeneity of the deformed media with the anisotropic work-hardening, hysteresis losses and Baushinger' effect at shock influences. Micro flaws in a media examined as cavitational discontinuities (pores), up-diffused evenly in a micro volume, for description of their kinetics on fronts of shock waves the so-called local models of damage mechanics are used. The proposed model naturally and effectively makes it possible to study thin-walled shell constructions as three-dimensional laminar medium with the uniform or composition layers close-packed along the thickness. The solution of boundary value problems is built on the basis of difference schemes of approximation on space and time. Results of modeling of nonlinear wave processes in a shell construction under action of local explosion also are presented.
@article{MM_2009_21_4_a6,
     author = {V. A. Petushkov},
     title = {Numerical simulation of high-speed dynamics of the nonlinear deformation and failure of damaged medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--95},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_4_a6/}
}
TY  - JOUR
AU  - V. A. Petushkov
TI  - Numerical simulation of high-speed dynamics of the nonlinear deformation and failure of damaged medium
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 79
EP  - 95
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_4_a6/
LA  - ru
ID  - MM_2009_21_4_a6
ER  - 
%0 Journal Article
%A V. A. Petushkov
%T Numerical simulation of high-speed dynamics of the nonlinear deformation and failure of damaged medium
%J Matematičeskoe modelirovanie
%D 2009
%P 79-95
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_4_a6/
%G ru
%F MM_2009_21_4_a6
V. A. Petushkov. Numerical simulation of high-speed dynamics of the nonlinear deformation and failure of damaged medium. Matematičeskoe modelirovanie, Tome 21 (2009) no. 4, pp. 79-95. http://geodesic.mathdoc.fr/item/MM_2009_21_4_a6/

[1] Panin V. E., Grinyaev Yu. V., Danilov V. I. i dr., Strukturnye urovni plasticheskoi deformatsii i razrusheniya, Nauka, Sib. Otd., Novosibirsk, 1990, 255 pp. | Zbl

[2] Curran D. R., Seaman L., Shockey D. A., “Dynamic failure of solids”, Phys. Reports, 147 (1987), 253–388 | DOI

[3] Dornowski W., “Influence of finite deformation on the growth mechanism of microvoids contained in structural metals”, Arch. Mech., 51 (1999), 71–86 | Zbl

[4] Assay J. R., Kerley J. R., “The response of materials to dynamic loading”, Int. J. Impact Engng., 5 (1987), 69–99 | DOI

[5] Raabe D., Computational materials science: the simulation of materials, microstructures and properties, Wiley-VCH, 1998, 379 pp.

[6] Wilsdorf H. G. F., “The ductile fracture of metals: A microstructural viewpoint”, Mater.Scien. and Engng., 59 (1983), 1–39 | DOI

[7] Petushkov V. A., Melsitov A. N., K chislennomu modelirovaniyu razrusheniya tonkostennykh obolochek pri intensivnykh impulsnykh vozdeistviyakh, Dep. VINITI, No 4171-V91, IMASh AN SSSR, M., 1991, 47 pp.

[8] Petushkov V. A., Melsitov A. N., “Ob impulsnoi dinamike povrezhdaemykh obolochek, vzaimodeistvuyuschikh s dvukhfaznoi zhidkostyu”, PMTF, 47:1 (2006), 139–152 | Zbl

[9] Petushkov V. A., “Lokalnye techeniya povrezhdaemoi deformiruemoi sredy pri udarnykh vzaimodeistviyakh s kavitiruyuschei zhidkostyu”, Izvestiya RAN. Mekhanika zhidkosti i gaza, 2007, no. 3, 121–133 | Zbl

[10] Bai Y., Dodd B., Adiabatic Shear Localization: Occurrence, Theories and Applications, Pergamon Press, Oxford, 1992, 247 pp.

[11] Rabotnov Yu. N., “Creep rupture”, Proc. of the XII Intern. Congress on Appl. Mech., Springer, Stanford, 1968, 342–349

[12] Johnson J. N., “Dynamic fracture and spallation in ductile solids”, J. Appl. Phys., 53 (1981), 2812–2825 | DOI

[13] Nemes J. A., Eftis J., Randles P. W., “Viscoplastic constitutive modeling of high strain-rate deformation, material damage and spall fracture”, J. Appl. Mech., 57 (1990), 282–291 | DOI

[14] Truesdell C., Noll W., “The non-linear field theories of mechanics”, Handbuch der Physik, Bd. III/3, Springer, New York, 1965, 602 pp. | MR

[15] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatgiz, M., 1966

[16] Kondaurov V. I., Fortov V. E., Osnovy termomekhaniki kondensirovannykh sred, Izd-vo MFTI, M., 2002, 336 pp.

[17] Mackenzie J. H., “The elastic constants of a solid containing spherical holes”, Proc. Physical Soc. London B, 63 (1958), 2–11 | DOI

[18] Johnson G. R., Cook W. H., “A Constitutive Model and Data for Metals Subjected to Large Strains, High Rates and High Temperatures”, Proc. of the 7th Int. Symp. on Ballistics, The Netherlands, The Hague, 1983, 541–547

[19] Bessiling Dzh. F., “Teoriya plasticheskogo techeniya nachalno-izotropnogo materiala, kotoryi anizotropno uprochnyaetsya pri plasticheskikh deformatsiyakh”, Mekhanika (Period. sb., per. s inostr. yaz.), 2, Mir, M., 1961, 124–168

[20] Petushkov V. A., Kaschenko S. F., “Strukturnoe modelirovanie nelineinykh protsessov deformirovaniya konstruktsii s treschinami pri tsiklicheskikh vozdeistviyakh”, Mashinovedenie AN SSSR, 1988, no. 1, 3–11

[21] Petushkov V. A., “Statisticheskie faktory v analize protsessov deformirovaniya i otsenke resursa”, Statisticheskie zakonomernosti malotsiklovogo razrusheniya, Nauka, M., 1989, 236–245

[22] Perzyna P., “Temperature and Rate Dependent Theory of Plasticity of Crystalline Solids”, Rev. Phys. Applique, 23 (1988), 445–459 | DOI

[23] Shockey D. A., Seaman L., Curran D. R., “The microstatistical fracture mechanics approach to dynamic fracture problem”, Int. J. Fracture, 27 (1985), 145–157 | DOI

[24] Parisch H., “Large displacements of shells including material nonlinearities”, Comp. Method Appl. Mech. Eng., 27 (1981), 183–214 | DOI | Zbl

[25] Petushkov V. A., Melsitov A. N., Postanovka i metody resheniya zadach impulsnoi dinamiki obolochek, Dep. VINITI No 4170-V91, IMASh AN SSSR, M., 1991, 76 pp.

[26] Petushkov V. A., Frolov K. V., “Dinamika gidrouprugikh sistem pri impulsnom vozbuzhdenii”, Dinamika konstruktsii gidroaerouprugikh sistem, Nauka, M., 2002, 162–202

[27] Donea J., Guiliani S., Halleux J. P., “Prediction of the nonlinear dynamic response of structural Components using finite elements”, Nucl. Engng. And Design, 37:1 (1976), 95–114 | DOI

[28] Johnson G. R., Cook H. W., “Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperature and Pressures”, Engng. Fracture Mech., 21:1 (1985), 31–48 | DOI

[29] Wright T. W., The Physics and Mathematics of Adiabatic Shear Bands, Cambridge University Press, Cambridge, 2002, 224 | MR