Two-dimensional numerical wavelet-homogenization for obtaining effective characteristics of composite materials
Matematičeskoe modelirovanie, Tome 21 (2009) no. 4, pp. 65-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of the homogenization of elliptic differential equations based on the wavelet transformation and finite element method is proposed. The method allows us to forecast effective characteristics and analyze averaged solutions of the equations for composite materials with given structure and characteristics of inclusions.
@article{MM_2009_21_4_a5,
     author = {S. P. Kopysov and Y. A. Sagdeeva},
     title = {Two-dimensional numerical wavelet-homogenization for obtaining effective characteristics of composite materials},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--78},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_4_a5/}
}
TY  - JOUR
AU  - S. P. Kopysov
AU  - Y. A. Sagdeeva
TI  - Two-dimensional numerical wavelet-homogenization for obtaining effective characteristics of composite materials
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 65
EP  - 78
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_4_a5/
LA  - ru
ID  - MM_2009_21_4_a5
ER  - 
%0 Journal Article
%A S. P. Kopysov
%A Y. A. Sagdeeva
%T Two-dimensional numerical wavelet-homogenization for obtaining effective characteristics of composite materials
%J Matematičeskoe modelirovanie
%D 2009
%P 65-78
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_4_a5/
%G ru
%F MM_2009_21_4_a5
S. P. Kopysov; Y. A. Sagdeeva. Two-dimensional numerical wavelet-homogenization for obtaining effective characteristics of composite materials. Matematičeskoe modelirovanie, Tome 21 (2009) no. 4, pp. 65-78. http://geodesic.mathdoc.fr/item/MM_2009_21_4_a5/

[1] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984, 352 pp. | MR | Zbl

[2] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993, 464 pp. | MR | Zbl

[3] E. Sanches-Palensiya, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984, 472 pp. | MR

[4] Z. Hashin, S. Shtrikman, “A variational approach to the theory of the elastic behaviour of multiphase materials”, Journal of the mechanics and physics of solids, 11 (1963), 127–140 | DOI | MR | Zbl

[5] J. D. Moulton, J. E. Dendy, J. M. Hyman, “The black box multigrid numerical homogenization algorithm”, Journal of computational physics, 142 (1998), 80–108 | DOI | MR | Zbl

[6] A. A. Yurkevich, Metod prognozirovaniya teploizolyatsionnykh svoistv stroitelnykh materialov i izdelii, Dis. $\dots$ kand. tekhn. nauk, Izhevskii gos. tekh. universitet, Izhevsk, 1999

[7] S. M. Kozlov, “Osrednenie sluchainykh operatorov”, Matematicheskii sbornik, 109(151):2 (1979), 188–202 | MR | Zbl

[8] S. P. Kopysov, Yu. A. Sagdeeva, “Chislennoe osrednenie svoistv kompozitov”, Trudy matematicheskogo tsentra im. N. I. Lobachevskogo, 33, Izd-vo Kazanskogo matematicheskogo obschestva, Kazan, 2006, 186–197

[9] S. Knapek, “Upscaling techniques based on subspace corrections and coarse-grid approximations”, Situ, 22:1 (1998), 35–58