Equilibriums and cycles of some nonautonomous difference equations
Matematičeskoe modelirovanie, Tome 21 (2009) no. 3, pp. 120-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions of existence of positive and asymptotically stable equilibrium for nonautonomous discrete exponential predator-prey model are obtained. If $$ r\in\Biggl(0,\frac1a+\frac1{a\sqrt{1-4a\gamma}}\Biggr),\qquad r\ne\frac1{2a}+\frac1{2a\sqrt{1-4a\gamma}}, $$ then the equation of the nonautonomous “Consensus” model $$ x_{n+1}=x_n\exp\Bigl(r_n\Bigl(-a+\frac1{x_n}-\frac\gamma{x^2_n}\Bigr)\Bigr),\qquad r_n>0,\quad a>0,\quad\gamma>0,\quad a\gamma\frac14, $$ has positive and asymptotically stable equilibrium.
@article{MM_2009_21_3_a9,
     author = {A. V. Lasunsky},
     title = {Equilibriums and cycles of some nonautonomous difference equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {120--126},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_3_a9/}
}
TY  - JOUR
AU  - A. V. Lasunsky
TI  - Equilibriums and cycles of some nonautonomous difference equations
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 120
EP  - 126
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_3_a9/
LA  - ru
ID  - MM_2009_21_3_a9
ER  - 
%0 Journal Article
%A A. V. Lasunsky
%T Equilibriums and cycles of some nonautonomous difference equations
%J Matematičeskoe modelirovanie
%D 2009
%P 120-126
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_3_a9/
%G ru
%F MM_2009_21_3_a9
A. V. Lasunsky. Equilibriums and cycles of some nonautonomous difference equations. Matematičeskoe modelirovanie, Tome 21 (2009) no. 3, pp. 120-126. http://geodesic.mathdoc.fr/item/MM_2009_21_3_a9/

[1] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Posleslovie Svirezheva Yu. M. Vito Volterra i sovremennaya matematicheskaya ekologiya, Nauka, M., 1976, 288 pp. | MR

[2] Samarskii A. A., Mikhailov A. P., Matematicheskoe modelirovanie: Idei. Metody. Primery, 2 izd., ispr., Fizmatlit, M., 2001, 320 pp. | MR | Zbl

[3] Kuznetsov S. P., Dinamicheskii khaos (kurs lektsii), Fizmatlit, M., 2001, 296 pp.

[4] Xiand Hong-jun, Liao Lu-sheng, Wang Jin-hua, “Global attractivity of a nonautonomous discrete Smith equation”, J. Changde Teach. Univ. Natur. Sci. Ed., 13:1 (2001), 13–15

[5] Zhang Qinqin, Zhou Zhan, “Global attractivity of a nonautonomous discrete logistic model”, Hokkaido Math. J., 29:1 (2000), 37–44 | MR | Zbl

[6] Liu Yue-hua, Xie Mao-sen, “Global attractivity of a kind of difference equations”, J. Changsha Univ. Elec. Power., 16:2 (2001), 9–11 | MR | Zbl

[7] Zhou Zhan, Zou Xingfu, “Stable periodic solutions in a discrete periodic logistic equation”, Appl. Math. Lett., 16:2 (2003), 165–171 | DOI | MR | Zbl

[8] Mohamad Sannay, Gopalsamy Kondalsamy, “Extreme stability and almost periodicity in a discrete logistic equation”, Tohoku Math. J., 52:1 (2000), 107–125 | DOI | MR | Zbl

[9] Ashikhmina E. V., Frisman E. Ya., “Issledovanie dinamicheskogo povedeniya uravneniya Rikkera pri periodicheskom izmenenii odnogo iz parametrov”, Ekologiya. Ekonomika. Ekspertiza. Informatika, 29 Shkola-seminar “Matematicheskoe modelirovanie v problemakh ratsionalnogo prirodopolzovaniya” (Rostov-na-Donu, 10–15 sent., 2001), Izd-vo SKNTs VSh, Rostov-na-Donu, 2001, 59–61

[10] Kuznetsov N. V., Leonov G. A., “Ustoichivost po pervomu priblizheniyu diskretnykh sistem”, Vest. S.-Peterburgskogo un-ta. Ser. 1, 2003, no. 1, 28–35 | Zbl

[11] Aidyn K., Bulgakov A. Ya., Demidenko G. V., “Asimptoticheskaya ustoichivost reshenii vozmuschennykh lineinykh raznostnykh uravnenii s periodicheskimi koeffitsientami”, Sib. mat. zh., 43:3 (2002), 493–507 | MR | Zbl

[12] Medina Rigoberto, Gil' M. I., “Accurate solution estimations for nonlinear nonautonomous vector difference equations”, Abstr. and Appl. Anal., 2004, no. 7, 603–611 | DOI | MR | Zbl

[13] Martynyuk D. I., Lektsii po kachestvennoi teorii raznostnykh uravnenii, Naukova dumka, Kiev, 1972, 251 pp. | MR

[14] Adrianova L. Ya., Vvedenie v teoriyu lineinykh sistem differentsialnykh uravnenii, Izd-vo S.-Peterburgskogo un-ta, SPb., 1992, 240 pp. | MR

[15] Snell T. W., Serra M., “Dynamics of natural rotifer populations”, Hydrobiologia, 368 (1998), 29–35 | DOI

[16] Gonik M. M., Medvedinskii A. B., Slozhnaya populyatsionnaya dinamika kolovratok v neodnorodnoi srede obitaniya: matematicheskoe modelirovanie. Matematika. Kompyuter. Obrazovanie, Sb. nauch. trudov, T. 3, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2005, 366 pp.