Mathematical model of platelet thrombus formation
Matematičeskoe modelirovanie, Tome 21 (2009) no. 3, pp. 109-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here is considered mathematical model of the platelet thrombus formation. The model of platelet transport on the shear flow is derived. The numerical method for solution of the system of equations is described. The model can be applied for studying of inflammatory diseases of kidneys.
@article{MM_2009_21_3_a8,
     author = {V. N. Buravtsev and A. I. Lobanov and A. V. Ukrainets},
     title = {Mathematical model of platelet thrombus formation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--119},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_3_a8/}
}
TY  - JOUR
AU  - V. N. Buravtsev
AU  - A. I. Lobanov
AU  - A. V. Ukrainets
TI  - Mathematical model of platelet thrombus formation
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 109
EP  - 119
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_3_a8/
LA  - ru
ID  - MM_2009_21_3_a8
ER  - 
%0 Journal Article
%A V. N. Buravtsev
%A A. I. Lobanov
%A A. V. Ukrainets
%T Mathematical model of platelet thrombus formation
%J Matematičeskoe modelirovanie
%D 2009
%P 109-119
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_3_a8/
%G ru
%F MM_2009_21_3_a8
V. N. Buravtsev; A. I. Lobanov; A. V. Ukrainets. Mathematical model of platelet thrombus formation. Matematičeskoe modelirovanie, Tome 21 (2009) no. 3, pp. 109-119. http://geodesic.mathdoc.fr/item/MM_2009_21_3_a8/

[1] Landau L. D., Livshits E. M., Gidrodinamika, Fizmatlit, M., 2001, 71–82 | MR

[2] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[3] Temam R., “Une méthode d'approximation de la solution des équations de Navie–Stokes”, Bul. Soc. Math. France, 96 (1968), 115–152 | MR | Zbl

[4] Kuharsky A. L., Fogelson A. L., “Surfase-Mediated control of Blood Coagulation: the Role of Binding Site Densities and Platelet Deposition”, Biophysical Journal, 80:3 (2001), 1050–1074 | DOI

[5] Vershinin V. V., Zavyalov Yu. S., Pavlov N. N., Ekstremalnye svoistva splainov i zadacha sglazhivaniya, Nauka, N., 1988, 41–50 | MR

[6] Koterov V. N., Kocherova A. S., Krivtsov V. M., “Ob odnoi metodike rascheta techenii neszhimaemoi zhidkosti”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:4 (2002), 550–558 | MR | Zbl

[7] Belotserkovskii O. M , Guschin V. A., Schennikov V. V., “Metod rasschepleniya v primenenii k resheniyu zadach dinamiki vyazkoi neszhimaemoi zhidkosti”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 15:1 (1975), 197–207 | MR

[8] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl

[9] Kakhaner D., Mouler K., Nesh S., Chislennye metody i programmnoe obespechenie, Mir, M., 1998

[10] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A., Tishkin V. F., Favorskii A. P., Raznostnye skhemy na neregulyarnykh setkakh, ZAO “Kriterii”, Minsk, 1996, 274 pp.