Local H\"older exponents approach for the prediction of russian stock market critical points
Matematičeskoe modelirovanie, Tome 21 (2009) no. 3, pp. 95-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to elaboration a new specific indicator based on the local Hölder exponents. This indicator has been used for forecasting of critical points of financial time series. The suggested approach is based on the hypothesis which claims that before market critical points the dynamics of financial time series is radically changed, namely time series became more smoothly. The approach has been tested on the stylized and real market data. It has been shown that it is possible to forecast such critical points of financial time series as large up and down movements and trend changes. On this base a new trading strategy has been elaborated and tested.
@article{MM_2009_21_3_a7,
     author = {R. R. Schastlivtsev},
     title = {Local {H\"older} exponents approach for the prediction of russian stock market critical points},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_3_a7/}
}
TY  - JOUR
AU  - R. R. Schastlivtsev
TI  - Local H\"older exponents approach for the prediction of russian stock market critical points
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 95
EP  - 108
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_3_a7/
LA  - ru
ID  - MM_2009_21_3_a7
ER  - 
%0 Journal Article
%A R. R. Schastlivtsev
%T Local H\"older exponents approach for the prediction of russian stock market critical points
%J Matematičeskoe modelirovanie
%D 2009
%P 95-108
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_3_a7/
%G ru
%F MM_2009_21_3_a7
R. R. Schastlivtsev. Local H\"older exponents approach for the prediction of russian stock market critical points. Matematičeskoe modelirovanie, Tome 21 (2009) no. 3, pp. 95-108. http://geodesic.mathdoc.fr/item/MM_2009_21_3_a7/

[1] Sharpe W. F., Alexander G. J., Bailey J. V., Investments, 6th ed., Prentice-Hall Int., London, 1999, 1028 pp.

[2] Peters E., Chaos and order in the capital markets. A new view of cycles, price, and market volatility, John Wiley Sons, Inc., 1991, 240 pp.

[3] Peters E., Fractial market analysis applying chaos theory to investment and economics, John Wiley Sons, Inc., 1994, 315 pp.

[4] Hilborn R. C., Chaos and Nonlinear Dynamics, 2 ed., Oxford University Press, 1994, 656 pp. | MR | Zbl

[5] Calvet L., Fisher A., Mandelbrot B., Large deviation and the distribution of price changes, Cowles Foundation Discussion Paper No 1165, Yale University, 1997, 28 pp.

[6] Sornette D., Why Stock Markets Crash, Princeton University Press, Princeton–Oxford, 2003, 421 pp. | Zbl

[7] Johansen A., Sornette D., “Large Stock Market Price Drawdowns are Outliers”, Journal of Risk, 4:2 (2001), 69–110

[8] Johansen A., Sornette D., Ledoit O., “Crashes as Critical Points”, Int. J. Theor. Appl. Finance, 3:2 (2000), 219–255 | DOI | MR | Zbl

[9] Sornette D., “Critical Market Crashes”, Physics Reports, 378 (2003), 1–98 | DOI | MR | Zbl

[10] Sornette D., Johansen A., “Large Financial Crashes”, Physica A, 245:3–4 (1997), 411–422 | DOI | MR

[11] Sornette D., Johansen A., Bouchaud J.-P., “Stock Market Crashes. Precursors and Replicas”, J. Phys. I France, 6 (1996), 167–175 | DOI

[12] Costa R. L., Vasconcelos G. L., “Long-range correlations and nonstationarity in the Brazilian stock market”, Physica A, 329 (2003), 231–248 | DOI | Zbl

[13] Los C., Yalamova R., Multifractal spectral analysis of the 1987 stock market crash, Working Paper, Department of Finance, Graduate School of Management, Kent State University, 2004, 39 pp.

[14] Agaev I. A., Kuperin Yu. A., Multifractal Analysis and Local Hoelder Exponents Approach to Detecting Stock Markets Crashes, , 2004 http://xxx.lanl.gov/ftp/cond-mat/papers/0407/0407603.pdf

[15] Feder J., Fractals, Plenum Press, New York–London, 1988, 254 pp. | MR | Zbl

[16] Bozhokin C., Parshin D., Fraktaly i multifraktaly, NITs, Izhevsk, 2001, 128 pp.

[17] Makarenko N. G., “Fraktaly, multifraktalnye mery i attraktory”, Nelineinye volny (2002, Nizhnii Novgorod), 2003, 381 pp.

[18] Falconer K., Fractal Geometry. Mathematical Foundations and Applications, Wiley, 2003, 337 pp. | MR | Zbl

[19] Bezruchko B. P., Smirnov D. A., Matematicheskoe modelirovanie i khaoticheskie vremennye ryady, GosUNTs “Kolledzh”, Saratov, 2005, 320 pp.

[20] Malinetskii G. G., Potapov A. B., Sovremennye problemy nelineinoi dinamiki, URSS, M., 2002, 249 pp.

[21] Meyer Y., Daoudi K., Vehel J. L., “Construction of continuous functions with prescribed local regularity”, Journal of Constructive Approximation, 14:3 (1998), 349–385 | DOI | MR | Zbl

[22] Crowell J., Shereshevsky M., Cukic B., Using fractal analysis to model software aging, Tech. rep., Lane Department of CSEE, West Virginia University, Morgantown, WV, 2002, May, 1–12

[23] Hull J. C., Options, futures and other derivatives, 3rd Edition, Prentice Hall, 1997, 572 pp.