Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2009_21_3_a7, author = {R. R. Schastlivtsev}, title = {Local {H\"older} exponents approach for the prediction of russian stock market critical points}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {95--108}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2009_21_3_a7/} }
TY - JOUR AU - R. R. Schastlivtsev TI - Local H\"older exponents approach for the prediction of russian stock market critical points JO - Matematičeskoe modelirovanie PY - 2009 SP - 95 EP - 108 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2009_21_3_a7/ LA - ru ID - MM_2009_21_3_a7 ER -
R. R. Schastlivtsev. Local H\"older exponents approach for the prediction of russian stock market critical points. Matematičeskoe modelirovanie, Tome 21 (2009) no. 3, pp. 95-108. http://geodesic.mathdoc.fr/item/MM_2009_21_3_a7/
[1] Sharpe W. F., Alexander G. J., Bailey J. V., Investments, 6th ed., Prentice-Hall Int., London, 1999, 1028 pp.
[2] Peters E., Chaos and order in the capital markets. A new view of cycles, price, and market volatility, John Wiley Sons, Inc., 1991, 240 pp.
[3] Peters E., Fractial market analysis applying chaos theory to investment and economics, John Wiley Sons, Inc., 1994, 315 pp.
[4] Hilborn R. C., Chaos and Nonlinear Dynamics, 2 ed., Oxford University Press, 1994, 656 pp. | MR | Zbl
[5] Calvet L., Fisher A., Mandelbrot B., Large deviation and the distribution of price changes, Cowles Foundation Discussion Paper No 1165, Yale University, 1997, 28 pp.
[6] Sornette D., Why Stock Markets Crash, Princeton University Press, Princeton–Oxford, 2003, 421 pp. | Zbl
[7] Johansen A., Sornette D., “Large Stock Market Price Drawdowns are Outliers”, Journal of Risk, 4:2 (2001), 69–110
[8] Johansen A., Sornette D., Ledoit O., “Crashes as Critical Points”, Int. J. Theor. Appl. Finance, 3:2 (2000), 219–255 | DOI | MR | Zbl
[9] Sornette D., “Critical Market Crashes”, Physics Reports, 378 (2003), 1–98 | DOI | MR | Zbl
[10] Sornette D., Johansen A., “Large Financial Crashes”, Physica A, 245:3–4 (1997), 411–422 | DOI | MR
[11] Sornette D., Johansen A., Bouchaud J.-P., “Stock Market Crashes. Precursors and Replicas”, J. Phys. I France, 6 (1996), 167–175 | DOI
[12] Costa R. L., Vasconcelos G. L., “Long-range correlations and nonstationarity in the Brazilian stock market”, Physica A, 329 (2003), 231–248 | DOI | Zbl
[13] Los C., Yalamova R., Multifractal spectral analysis of the 1987 stock market crash, Working Paper, Department of Finance, Graduate School of Management, Kent State University, 2004, 39 pp.
[14] Agaev I. A., Kuperin Yu. A., Multifractal Analysis and Local Hoelder Exponents Approach to Detecting Stock Markets Crashes, , 2004 http://xxx.lanl.gov/ftp/cond-mat/papers/0407/0407603.pdf
[15] Feder J., Fractals, Plenum Press, New York–London, 1988, 254 pp. | MR | Zbl
[16] Bozhokin C., Parshin D., Fraktaly i multifraktaly, NITs, Izhevsk, 2001, 128 pp.
[17] Makarenko N. G., “Fraktaly, multifraktalnye mery i attraktory”, Nelineinye volny (2002, Nizhnii Novgorod), 2003, 381 pp.
[18] Falconer K., Fractal Geometry. Mathematical Foundations and Applications, Wiley, 2003, 337 pp. | MR | Zbl
[19] Bezruchko B. P., Smirnov D. A., Matematicheskoe modelirovanie i khaoticheskie vremennye ryady, GosUNTs “Kolledzh”, Saratov, 2005, 320 pp.
[20] Malinetskii G. G., Potapov A. B., Sovremennye problemy nelineinoi dinamiki, URSS, M., 2002, 249 pp.
[21] Meyer Y., Daoudi K., Vehel J. L., “Construction of continuous functions with prescribed local regularity”, Journal of Constructive Approximation, 14:3 (1998), 349–385 | DOI | MR | Zbl
[22] Crowell J., Shereshevsky M., Cukic B., Using fractal analysis to model software aging, Tech. rep., Lane Department of CSEE, West Virginia University, Morgantown, WV, 2002, May, 1–12
[23] Hull J. C., Options, futures and other derivatives, 3rd Edition, Prentice Hall, 1997, 572 pp.