A correction method of the model output by measurements based on diffusion approximation and its application to the analysis of hydro-physical characteristics
Matematičeskoe modelirovanie, Tome 21 (2009) no. 3, pp. 53-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new data assimilation method or a method of correction of the model outputs by observed data is proposed. The method is based on the diffusion approximation of the optimal filter and it has a number of advantages in comparison with existed data assimilation methods. In particular the method does not need the linearity of model operator, it reduces the problem of optimal filtering to the solution of a system of linear equations, and it allows to constrain the tolerance bounds for the optimal estimator. The conditions of existence and uniqueness of the sough estimation (filter) are found out in the paper. The experiments with the hydrodynamic model НОРЕ (Hamburg Ocean Primitive Equation) are presented and analyzed.
@article{MM_2009_21_3_a4,
     author = {K. Belyaev and N. Tuchkova and I. Kirchner},
     title = {A correction method of the model output by measurements based on diffusion approximation and its application to the analysis of hydro-physical characteristics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {53--68},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_3_a4/}
}
TY  - JOUR
AU  - K. Belyaev
AU  - N. Tuchkova
AU  - I. Kirchner
TI  - A correction method of the model output by measurements based on diffusion approximation and its application to the analysis of hydro-physical characteristics
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 53
EP  - 68
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_3_a4/
LA  - ru
ID  - MM_2009_21_3_a4
ER  - 
%0 Journal Article
%A K. Belyaev
%A N. Tuchkova
%A I. Kirchner
%T A correction method of the model output by measurements based on diffusion approximation and its application to the analysis of hydro-physical characteristics
%J Matematičeskoe modelirovanie
%D 2009
%P 53-68
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_3_a4/
%G ru
%F MM_2009_21_3_a4
K. Belyaev; N. Tuchkova; I. Kirchner. A correction method of the model output by measurements based on diffusion approximation and its application to the analysis of hydro-physical characteristics. Matematičeskoe modelirovanie, Tome 21 (2009) no. 3, pp. 53-68. http://geodesic.mathdoc.fr/item/MM_2009_21_3_a4/

[1] Gill M., Malanotte-Rizzoli P., “Data assimilation in meteorology and oceanography”, Adv. Geophys., 33 (1991), 141–266

[2] Cohen S., “An introduction to estimation theory”, J. Royal Met. Society Japan, 75 (1997), 257–288

[3] Brassington G., Warren G., Smith N., Schiller A., Oke P., “Progress on operational ocean prediction for Australia”, Bulletin of the Australian Meteorological and Oceanographic Society, 18 (2005), 104–109

[4] Wiener N., Masani P., “Prediction theory of multivariate stochastic processes”, Acta Math., 98 (1957), 111–150 | DOI | MR | Zbl

[5] Kalman R., “A new approach to linear filtering and prediction problem”, J. Basic Engrg., 1 (1960), 35–45

[6] Burgers G., P. J. van Leeuwen, Evensen G., “Analysis scheme in the ensemble Kalman filter”, Mon. Weather Rev., 126 (1998), 1719–1724 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1977, 340 pp. | MR | Zbl

[8] Malanotte-Rizzoli P., Modern Approaches to Data Assimilation in Ocean Modeling, Elsevier Oceanography Series, 1996, 455 pp.

[9] Belyaev K., Solovev V., “O korrektsii parametrov chislennoi modeli s pomoschyu dannykh izmerenii”, Matem. modelirovanie, 13:10 (2001), 3–16 | MR | Zbl

[10] Tanajura C., Belyaev K., “On the oceanic impact of a data assimilation method in a couple ocean-landatmosphere model”, Ocean Dynamics, 52 (2002), 123–132 | DOI

[11] Gikhman I., Skorokhod A., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1965, 655 pp. | MR | Zbl

[12] Strook D., Varadhan S., Multidimensional random processes, Springer-Verlag, Berlin, 1995, 233 pp.

[13] Wolff J., Maier-Reimer E., Legutke S., The Hamburg Ocean Primitive Equation Model, HOPE, Tech. Report, 18, German Climate Computer Centre, Hamburg, 1997

[14] Lappo S., Gulev S., Rozhdestvenskii A., Krupnomasshtabnoe teplovoe vzaimodeistvie v sisteme “okean-atmosfera” i energoaktivnye zony Mirovogo Okeana, Gidrometizdat, L., 1990, 336 pp.

[15] Matsuno T., “Isopycnal Mixing in Ocean Circulation models”, J. Phys. Oceanogr., 17 (1966), 150–155

[16] Mikhailov G. M., Parkhomenko V. P., Tuchkova N. P., Belyaev K. P., Sokolov V. A., Chernetsov A. M., Programmnyi kompleks dlya provedeniya i obrabotki ansamblevykh raschetov pri modelirovanii v klimaticheskoi sisteme, VTs RAN, M., 2006, 52 pp.