Mathematical modeling of the gas producing condensed matter
Matematičeskoe modelirovanie, Tome 21 (2009) no. 2, pp. 103-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the model of the rare gas consisting of the same particles colliding when vectors of their velocities are orthogonal. The conservation laws for momentum and kinetic energy of colliding particles take place. The particles in rest produce structure which is similar to condensed matter. The kinetic equation is proposed for description of dynamics for such gas. The numerical experiments confirm conformity of the chosen model and direct modeling by the Monte Carlo method of process of the specified collisions. In the paper the scheme of modeling of the phenomenon by the Monte Carlo method is resulted. The test of convergence of numerical experiments was given for exact solution and for difference approximations.
@article{MM_2009_21_2_a9,
     author = {A. V. Galkin},
     title = {Mathematical modeling of the gas producing condensed matter},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--117},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_2_a9/}
}
TY  - JOUR
AU  - A. V. Galkin
TI  - Mathematical modeling of the gas producing condensed matter
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 103
EP  - 117
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_2_a9/
LA  - ru
ID  - MM_2009_21_2_a9
ER  - 
%0 Journal Article
%A A. V. Galkin
%T Mathematical modeling of the gas producing condensed matter
%J Matematičeskoe modelirovanie
%D 2009
%P 103-117
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_2_a9/
%G ru
%F MM_2009_21_2_a9
A. V. Galkin. Mathematical modeling of the gas producing condensed matter. Matematičeskoe modelirovanie, Tome 21 (2009) no. 2, pp. 103-117. http://geodesic.mathdoc.fr/item/MM_2009_21_2_a9/

[1] CBM collaboration. Compressed Baryonic Matter Experiment Technical Status Report CBM experiment, CBM collaboration , January 2005, 423 pp. http://www.gsi.de-documents-DOC-Feb-447-1.pdf.url

[2] Weber F., “Strangeness in neutron stars”, Phys. G Nucl. Part. Phys., 27 (2001), 465–474 | DOI

[4] Boltsman L., Lektsii po teorii gazov, GIITL, M., 1953, 551 pp.

[5] Chetverushkin B. N., Kineticheski-soglasovannye skhemy v gazovoi dinamike, MGU, M., 1999, 232 pp.

[6] Karleman T., Matematicheskie zadachi kineticheskoi teorii gazov, IL, M., 1960, 124 pp.

[7] Radon J., “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten”, Berichte Sachsische Akademie der Wissenschaften (Leipzig), 29 (1917), 262–277

[8] Vedenyapin V. V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001, 112 pp.

[9] Smoluchowski M. V., “Drei Vortrage Uber Diffusion Brownsche Molekulabewegung und Koagulation vonkolloidteilchen”, Z. phys. Chem., 92 (1917), 129–168

[10] Galkin V. A., Uravnenie Smolukhovskogo, Fizmatlit, M., 2001, 336 pp. | MR

[11] Galkin V. A., “Teoriya funktsionalnykh reshenii sistem zakonov sokhraneniya i ee prilozheniya”, Trudy seminara im. I. G. Petrovskogo, 20, iz-vo MGU, M., 2000, 81–120 | MR

[12] Galkin V. A., Galkin A. V., “Metod Monte-Karlo modelirovaniya prostranstvenno neodnorodnoi koagulyatsii”, Trudy III Mezhdunarodnoi konferentsii “Matematicheskie idei P. L. Chebyshëva i ikh prilozhenie k sovremennym problemam estestvoznaniya” (Obninsk, 14–18 maya 2006 g.), eds. S. M. Nikolskii, V. A. Sadovnichii, V. A. Galkin, IATE, Obninsk, 2008, 18–24

[13] Galkin V. A., “Skhodimost raznostnykh skhem i metoda neposredstvennogo modelirovaniya k resheniyam uravneniya Smolukhovskogo kineticheskoi teorii koagulyatsii”, Doklady RAN, 397:1 (2004), 7–11 | MR