Mathematical model of control of stochastical object with distributed parameters
Matematičeskoe modelirovanie, Tome 21 (2009) no. 2, pp. 85-102

Voir la notice de l'article provenant de la source Math-Net.Ru

The partial differential equation for describing optimum movement of nonmarkov system with distributed parameters under random influences with arbitrary distribution is derived. Decision of equation by means of interpolation Kantorovich's method in basis of Lagrange functions of influence is realized. Algorithm of output of optimum control at base of principle of sequence approach is created. By using numerical examination is established, that the method ensures high accuracy of solution.
@article{MM_2009_21_2_a8,
     author = {A. N. Kudinov and A. N. Katulev and M. F. Malevinsky},
     title = {Mathematical model of control of stochastical object with distributed parameters},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {85--102},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_2_a8/}
}
TY  - JOUR
AU  - A. N. Kudinov
AU  - A. N. Katulev
AU  - M. F. Malevinsky
TI  - Mathematical model of control of stochastical object with distributed parameters
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 85
EP  - 102
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_2_a8/
LA  - ru
ID  - MM_2009_21_2_a8
ER  - 
%0 Journal Article
%A A. N. Kudinov
%A A. N. Katulev
%A M. F. Malevinsky
%T Mathematical model of control of stochastical object with distributed parameters
%J Matematičeskoe modelirovanie
%D 2009
%P 85-102
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_2_a8/
%G ru
%F MM_2009_21_2_a8
A. N. Kudinov; A. N. Katulev; M. F. Malevinsky. Mathematical model of control of stochastical object with distributed parameters. Matematičeskoe modelirovanie, Tome 21 (2009) no. 2, pp. 85-102. http://geodesic.mathdoc.fr/item/MM_2009_21_2_a8/