Analog for monotone scheme for calculation of non self-conjugated system of quasi-diffusion equations in $r-z$-geometry
Matematičeskoe modelirovanie, Tome 21 (2009) no. 2, pp. 47-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered construction of a monotonous difference schemes analogue for not self-conjugated quasi-diffusion (QD) equations in $r-z$-geometry on an example of a non-stationary problem of external isotropic radiation propagation to a cylindrical pipe. For this purpose the coordinate rotation in a plane $(r,z)$ is done resulting diagonal form of QD tensor in the center of a cell, and, accordingly, it is achieved minimization of not diagonal elements on the sides of a cell. This scheme is similar to scheme offered for the self-conjugated problem [1]. The hybrid difference scheme is used in calculations which are nonmonotonic one in areas of decision smoothness and analogue of monotonous one at the nearest of contact boundaries. The perpendicularity of a front of light wave to the contact boundary makes a problem of external radiation propagation to a pipe to be the good test for research of a quality of the scheme.
@article{MM_2009_21_2_a4,
     author = {E. N. Aristova},
     title = {Analog for monotone scheme for calculation of non self-conjugated system of quasi-diffusion equations in $r-z$-geometry},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--59},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_2_a4/}
}
TY  - JOUR
AU  - E. N. Aristova
TI  - Analog for monotone scheme for calculation of non self-conjugated system of quasi-diffusion equations in $r-z$-geometry
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 47
EP  - 59
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_2_a4/
LA  - ru
ID  - MM_2009_21_2_a4
ER  - 
%0 Journal Article
%A E. N. Aristova
%T Analog for monotone scheme for calculation of non self-conjugated system of quasi-diffusion equations in $r-z$-geometry
%J Matematičeskoe modelirovanie
%D 2009
%P 47-59
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_2_a4/
%G ru
%F MM_2009_21_2_a4
E. N. Aristova. Analog for monotone scheme for calculation of non self-conjugated system of quasi-diffusion equations in $r-z$-geometry. Matematičeskoe modelirovanie, Tome 21 (2009) no. 2, pp. 47-59. http://geodesic.mathdoc.fr/item/MM_2009_21_2_a4/

[1] E. N. Aristova, A. V. Kolpakov, “Kombinirovannaya raznostnaya skhema dlya approksimatsii ellipticheskogo operatora na kosougolnoi yacheike”, Matematicheskoe modelirovanie, 3:4 (1991), 93–102 | MR

[2] J. A. Fleck, Jr., J. D. Cummings, “An Implicit Monte Carlo Scheme for Calculating Time and Frequency Dependent Nonlinear Radiation transport”, J. of Computational Physics, 8:3 (1971), 313–342 | DOI | MR | Zbl

[3] Marvin L. Adams, Edward W. Larsen, “Fast iterative methods for discrete-ordinates particle transport calculations”, Progress in Nuclear Energy, 40:1 (2002), 3–159 | DOI

[4] V. Ya. Goldin, “Kvazidiffuzionnyi metod resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiziki, 4:6 (1964), 1078–1087 | MR

[5] V. Ya. Goldin, “O matematicheskom modelirovanii zadach sploshnoi sredy s neravnovesnym perenosom”, Sovremennye problemy matematicheskoi fiziki i vychislitelnoi matem., Nauka, M., 1982, 113–127 | MR

[6] E. N. Aristova, V. Ya. Gol'din, “The method of consideration of a strong scattering anisotropy in transport equation”, Proceedings of the Joint International Conference on Mathematical Methods and Supercomputing for Nuclear Applications, V. 1–2 (Saratoga Springs, NY, October 5–9, 1997), American Nuclear Society, Inc., La Grange Park, IL, USA, 1507–1516

[7] E. N. Aristova, V. Ya. Gol'din, “Computation of anisotropy scattering of solar radiation in atmosphere (monoenergetic case)”, Journal of Quantitative Spectroscopy and Radiative Transfer, 67 (2000), 139–157 | DOI

[8] V. Ya. Goldin, V. A. Degtyarev, A. V. Kolpakov, Priblizhennyi uchet nestatsionarnosti v uravneniyakh kvazidiffuzii, prepr. No 122, In. prikl. matem., M., 1984

[9] E. N. Aristova, D. F. Baidin, V. Ya. Goldin, “Dva varianta ekonomichnogo metoda resheniya uravneniya perenosa v $r-z$ geometrii na osnove perekhoda k peremennym Vladimirova”, Matematicheskoe modelirovanie, 18:7 (2006), 43–52 | MR | Zbl

[10] E. N. Aristova, V. Ya. Goldin, A. V. Kolpakov, “Metodika rascheta perenosa izlucheniya v tele vrascheniya”, Matematicheskoe modelirovanie, 9:3 (1997), 91–108 | MR | Zbl

[11] V. Ya. Goldin, A. V. Kolpakov, Nelineinyi metod potokovoi progonki dlya resheniya mnogomernogo diffuzionnogo uravneniya, prepr. No 22, In. prikl. matem., M., 1982, 13 pp.

[12] E. N. Aristova, V. Ya. Goldin, “Nelineinoe uskorenie iteratsii resheniya ellipticheskikh sistem uravnenii”, Matematicheskoe modelirovanie, 13:9 (2001), 82–90 | MR | Zbl

[13] D. Yu. Anistratov, E. N. Aristova, V. Ya. Goldin, “Nelineinyi metod resheniya zadach perenosa izlucheniya v srede”, Matematicheskoe modelirovanie, 8:12 (1996), 3–28 | MR | Zbl

[14] V. Ya. Goldin, D. A. Goldina, A. V. Kolpakov, O reshenii dvumernoi statsionarnoi zadachi kvazidiffuzii, prepr. No 49, In. prikl. matem., M., 1982, 13 pp.

[15] E. N. Aristova, V. Ya. Goldin, A. V. Kolpakov, “Perenos izlucheniya cherez koltsevuyu schel v tele vrascheniya”, Matematicheskoe modelirovanie, 9:4 (1997), 3–10 | MR | Zbl