Simulation of turbulent motion generation in edge wakes
Matematičeskoe modelirovanie, Tome 21 (2009) no. 2, pp. 36-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some results of turbulence generation simulation are presented. The proposed mathematical model follows from special averaged procedure on the scale near free molecules run length. This turbulence generation mechanism is described by expanded system of unsteady Euler and Navier–Stokes equations with additional dispersive terms of the third order, which are results of average procedure. Integration of initial hydrodynamics equations is fulfilled by known Godunov's method of the second order of accuracy. Calculated average parameters of turbulent flows have the agreement with experimental results.
@article{MM_2009_21_2_a3,
     author = {M. Ya. Ivanov},
     title = {Simulation of turbulent motion generation in edge wakes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {36--46},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_2_a3/}
}
TY  - JOUR
AU  - M. Ya. Ivanov
TI  - Simulation of turbulent motion generation in edge wakes
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 36
EP  - 46
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_2_a3/
LA  - ru
ID  - MM_2009_21_2_a3
ER  - 
%0 Journal Article
%A M. Ya. Ivanov
%T Simulation of turbulent motion generation in edge wakes
%J Matematičeskoe modelirovanie
%D 2009
%P 36-46
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_2_a3/
%G ru
%F MM_2009_21_2_a3
M. Ya. Ivanov. Simulation of turbulent motion generation in edge wakes. Matematičeskoe modelirovanie, Tome 21 (2009) no. 2, pp. 36-46. http://geodesic.mathdoc.fr/item/MM_2009_21_2_a3/

[1] Reynolds O., “On the dynamical theory of incompressible viscous fluids and the determination of the criterion”, Phil. Trans. of Roy. Soc., 86 (1894), 123–164; Problemy turbulentnosti, ONTI, M., 1936, 185–227

[2] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, M., 1970, 904 pp.

[3] Mathieu J., Scott J., An introduction to turbulent flow, Cambridge Univ. Press, 2000, 374 pp. | MR | Zbl

[4] Grinstein F. F., Hussain F., Jran E. S., A numerical study of mixing control in spatially evolving shear flows, AIAA Paper No 89-0977, 1989, 13 pp.

[5] Ivanov M. Ya., Scherbakov S. A., “Chislennoe modelirovanie turbulentnykh kromochnykh sledov”, TsIAM 2001–2005. Osnovnye rezultaty nauchno-tekhnicheskoi deyatelnosti, T. 1, TsIAM, M., 2005, 350–354

[6] Kraiko A. N., Pyankov K. S., “Techeniya idealnogo gaza s otryvnymi zonami i nestatsionarnymi kontaktnymi razryvami slozhnoi formy”, Izv. RAN. Mekhanika zhidkosti i gaza, 2006, no. 5, 41–54

[7] Ivanov M. Ya., “K modelirovaniyu osrednennykh reshenii gidrodinamicheskikh zadach”, Matematicheskoe modelirovanie, 9:12 (1997), 110–120 | MR | Zbl

[8] Ivanov M. Ya., Terenteva L. V., Elementy gazodinamiki dispergiruyuschei sredy, Informkonversiya, M., 2002, 167 pp.

[9] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[10] Millionschikov M. D., “Nekotorye problemy turbulentnosti i turbulentnogo teplomassoobmena”, Turbulentnye techeniya, Nauka, M., 1974, 5–18

[11] Olsen M. G., Dutton J. C., “Planar velocity measurements in a weakly compressible mixing layer”, J. Fluid Mech., 486 (2003), 71–89 | DOI

[12] Ivanov M. Ya., “K analizu mekhanizma ostsillyatsii chislennykh reshenii uravnenii gidrodinamiki”, Zhurn. vychisl. matem. i matem. fiz., 22:2 (1982), 411–417 | MR | Zbl

[13] Byurgers I. M., “Ob odnoi matematicheskoi modeli, illyustriruyuschei teoriyu turbulentnosti”, Problemy mekhaniki, Izd. IL, M., 1955, 422–445

[14] Barenblatt G. I., Ivanov M. Ja., Schapiro G. I., “On the structure of wave fronts in nonlinear dissipative media”, Archive for Rational Mech. and Analysis, 87:4 (1985), 293–303 | MR | Zbl