Mathematical model of siltage process in navigation canals of Taganrog bay
Matematičeskoe modelirovanie, Tome 21 (2009) no. 2, pp. 29-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of the siltage process in the navigation canals in a shallow-water regions of the Taganrog bay is described. The results of a computing experiment on the presented model are explained. Results and results of other authors are compared.
@article{MM_2009_21_2_a2,
     author = {L. G. Chikina and A. L. Chikin},
     title = {Mathematical model of siltage process in navigation canals of {Taganrog} bay},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {29--35},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_2_a2/}
}
TY  - JOUR
AU  - L. G. Chikina
AU  - A. L. Chikin
TI  - Mathematical model of siltage process in navigation canals of Taganrog bay
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 29
EP  - 35
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_2_a2/
LA  - ru
ID  - MM_2009_21_2_a2
ER  - 
%0 Journal Article
%A L. G. Chikina
%A A. L. Chikin
%T Mathematical model of siltage process in navigation canals of Taganrog bay
%J Matematičeskoe modelirovanie
%D 2009
%P 29-35
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_2_a2/
%G ru
%F MM_2009_21_2_a2
L. G. Chikina; A. L. Chikin. Mathematical model of siltage process in navigation canals of Taganrog bay. Matematičeskoe modelirovanie, Tome 21 (2009) no. 2, pp. 29-35. http://geodesic.mathdoc.fr/item/MM_2009_21_2_a2/

[1] Khrustalev Yu. P., Ivlieva O. V., Problemy antropogennoi morskoi sedimentologii (na primere Azovskogo morya), Izd. “Gefest”, Rostov-na-Donu, 1999, 196 pp.

[2] Chikin A. L., “Ob odnom iz metodov rascheta parametrov techenii v vodoemakh s bolshoi neodnorodnostyu glubin”, Vodnye resursy, 32:1 (2005), 55–60

[3] Marchuk G. I., Kagan B. A., Okeanskie prilivy (matematicheskie modeli i chislennye eksperimenty), Gidrometeoizdat, L., 1977, 296 pp.

[4] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Izd. URSS, M., 1998, 248 pp.

[5] Lumborg U., Windelin A., “Hydrography and cohesive sediment modelling: application to the Rømø Dyb tidal area”, Journal of Marine Systems, 38:3–4 (2003), 287–303 | DOI

[6] Pandoe Wahyu W., Edge Billy L., “Cohesive sediment transport in the 3D-hydrodynamic-baroclinic circulation model, study case for idealized tidal inlet”, Ocean Engineering, 31:17–18 (2004), 2227–2252 | DOI

[7] Belolipetskii V. M., Genova S. N., “Vychislitelnyi algoritm dlya opredeleniya dinamiki vzveshennykh i donnykh nanosov v rechnom rusle”, Vychislitelnye tekhnologii, 9:2 (2004), 9–25 | Zbl

[8] Krukier L. A., Chikina L. G., Belokon T. V., “Triangular skew-symmetric iterative solvers for strongly nonsymmetric positive real linear system of equations”, Applied Numerical Mathematics, 41:1 (2002), 89–105 | DOI | MR | Zbl

[9] Gidrometeorologiya i gidrokhimiya morei SSSR. Tom V. Azovskoe more, Gidrometeoizdat, S.-Pb., 1991

[10] Shapovalov P. B., Zanosimost Eiskogo kanala, Tr. AzChermorputi, 1957, 129 pp.