Two-dimensional macroscopic model of traffic flows
Matematičeskoe modelirovanie, Tome 21 (2009) no. 2, pp. 118-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of modeling vehicular traffic flows on city roads and at freeways is considered. A brief review of existing conceptions and models is given. A two-dimensional model of congestion traffic flows is developed basing on the continuum approach and analogy with kinetically consistent finite-difference schemes. The model is verified by test problems.
@article{MM_2009_21_2_a10,
     author = {A. B. Sukhinova and M. A. Trapeznikova and B. N. Chetverushkin and N. G. Churbanova},
     title = {Two-dimensional macroscopic model of traffic flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {118--126},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_2_a10/}
}
TY  - JOUR
AU  - A. B. Sukhinova
AU  - M. A. Trapeznikova
AU  - B. N. Chetverushkin
AU  - N. G. Churbanova
TI  - Two-dimensional macroscopic model of traffic flows
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 118
EP  - 126
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_2_a10/
LA  - ru
ID  - MM_2009_21_2_a10
ER  - 
%0 Journal Article
%A A. B. Sukhinova
%A M. A. Trapeznikova
%A B. N. Chetverushkin
%A N. G. Churbanova
%T Two-dimensional macroscopic model of traffic flows
%J Matematičeskoe modelirovanie
%D 2009
%P 118-126
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_2_a10/
%G ru
%F MM_2009_21_2_a10
A. B. Sukhinova; M. A. Trapeznikova; B. N. Chetverushkin; N. G. Churbanova. Two-dimensional macroscopic model of traffic flows. Matematičeskoe modelirovanie, Tome 21 (2009) no. 2, pp. 118-126. http://geodesic.mathdoc.fr/item/MM_2009_21_2_a10/

[1] A. Reuschel, “Fahrzeugbewegungen in der Kolonne begleichformig beschleunigtem oder verzogertem Leitfahrzeug”, Zeit. d. Oster. Ing. u. Architekt. Vereines, 4:193 (1950), 50–62, 73–77 | MR

[2] L. A. Pipes, “An operational analysis of traffic dynamic”, J. Appl. Phys., 24 (1953), 271–281 | DOI | MR

[3] R. Herman, R. B. Potts, “Single lane traffic theory and experiment”, Proc. of Symp. on Theory of Traffic Flow, ed. R. Herman, Elsevier, 1959, 120–146 | MR

[4] D. C. Gazis, R. Herman, R. B. Potts, “Car following theory of steady state traffic flow”, Operations Research, 7 (1959), 499–505 | DOI | MR

[5] I. Prigogine, F. C. Andrews, “A Boltzmann like approach for traffic flow”, Operations Research, 8:6 (1960), 789–797 | DOI | MR | Zbl

[6] R. W. Rothery, R. Silver, R. Herman, C. Torner, “Analysis of experiments on single lane bus flow”, Operations Research, 12:6 (1964), 913–933 | DOI

[7] I. Prigogine, R. Herman, Kinetic theory of vehicular traffic, Elsevier, Amsterdam, 1971 | Zbl

[8] S. L. Paveri-Fontana, “On Boltzmann like treatments for traffic flow”, Transportation Research, 9 (1975), 225–235 | DOI

[9] K. Nagel, M. Schreckenberg, “A cellular automaton model for freeway traffic”, J. Phys. I France, 2 (1992), 2221–2229 | DOI

[10] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, “Phenomenological study of dynamical model of traffic flow”, J. Physique I France, 5 (1995), 1389–1399 | DOI

[11] K. Nagel, High-speed microsimulations of traffic flow, Thesis, University Cologne, Germany, 1995

[12] M. H. Lighthill, G. B. Witham, “On kinematic waves: A theory of traffic flow on long crowded roads”, Proc. Royal Soc. Ser. A, 229 (1955), 317–345 | DOI | MR | Zbl

[13] A. T. Chronopoulos, G. Wang, “Parallel solution of a traffic flow simulation problem”, Parallel Computing, 22 (1997), 1965–1983 | DOI | MR | Zbl

[14] D. Helbing, M. Treiber, “Numerical simulation of macroscopic traffic equations”, Computing in Science and Engineering, 1:5 (1999), 89–99 | DOI

[15] D. Helbing, “Gas-kinetic derivation of Navier–Stokes-like traffic equations”, Phys. Rev. E, 53 (1996), 2366–2381 | DOI | MR

[16] D. Helbing, “Structure and instability of high-density equations for traffic flow”, Phys. Rev. E, 57 (1998), 6176–6179 | DOI

[17] A. Aw, A. Klar, T. Materne, M. Rascle, “Derivation of continuum traffic flow models from microscopic follow-the-leader models”, SIAM J. Appl. Math., 63 (2002), 259–278 | DOI | MR | Zbl

[18] A. Klar, R. Wegener, “A hierarchy of models for multilane vehicular traffic I: Modeling”, SIAM J. Appl. Math., 59 (1999), 983–1001 | DOI | MR | Zbl

[19] D. Helbing, “Modeling multi-lane traffic flow with queuing effects”, Physica A, 242 (1997), 175–194 | DOI

[20] B. N. Chetverushkin, “Application of the kinetic schemes for simulation of viscous gas dynamics problem”, CFD Journal (Jap. Sos. of CFD), 10:3 (2001), 363–371

[21] Yu. N. Karamzin, M. A. Trapeznikova, B. N. Chetverushkin, N. G. Churbanova, “Dvumernaya model avtomobilnykh potokov”, Matematicheskoe modelirovanie, 2006, no. 6, 85–95 | MR | Zbl