Discretization of linear communication channel with memory and additive white Gaussian noise by numerical method
Matematičeskoe modelirovanie, Tome 21 (2009) no. 1, pp. 53-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical model of discrete communication channel is proposed on basis of that requirements to its parameter are determined. The task of basis functions forming is supplied. The claim about method of channel entry and channel exit basis functions systems forming is proved. The task solution by numerical method is found. The claim about its adequacy only on basis of input data is proved. The algorithm of basis functions forming is developed its availability is verified on basis of concrete examples.
@article{MM_2009_21_1_a5,
     author = {A. A. Batenkov and K. A. Batenkov},
     title = {Discretization of linear communication channel with memory and additive white {Gaussian} noise by numerical method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {53--74},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_1_a5/}
}
TY  - JOUR
AU  - A. A. Batenkov
AU  - K. A. Batenkov
TI  - Discretization of linear communication channel with memory and additive white Gaussian noise by numerical method
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 53
EP  - 74
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_1_a5/
LA  - ru
ID  - MM_2009_21_1_a5
ER  - 
%0 Journal Article
%A A. A. Batenkov
%A K. A. Batenkov
%T Discretization of linear communication channel with memory and additive white Gaussian noise by numerical method
%J Matematičeskoe modelirovanie
%D 2009
%P 53-74
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_1_a5/
%G ru
%F MM_2009_21_1_a5
A. A. Batenkov; K. A. Batenkov. Discretization of linear communication channel with memory and additive white Gaussian noise by numerical method. Matematičeskoe modelirovanie, Tome 21 (2009) no. 1, pp. 53-74. http://geodesic.mathdoc.fr/item/MM_2009_21_1_a5/

[1] Sklyar B., Tsifrovaya svyaz. Teoreticheskie osnovy i prakticheskoe primenenie, Izd. 2-e ispr., per. s angl., Vilyams, M., 2003, 1104 pp.

[2] Fink L. M., Teoriya peredachi diskretnykh soobschenii, Sovetskoe radio, M., 1970, 533 pp.

[3] Klovskii D. D. (red.), Teoriya elektricheskoi svyazi, Uchebnik dlya VUZov, Radio i svyaz, M., 1999, 432 pp.

[4] Van Tris G., Teoriya obnaruzheniya, otsenok i modulyatsii, T. 1, Sov. radio, M., 1972, 744 pp.

[5] Korn G., Korn K., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, M., 1970, 720 pp.

[6] Baskakov S. I., Radiotekhnicheskie tsepi i signaly, Uchebnik, Vyssh. Shkola, M., 1983, 536 pp.

[7] Varakin L. E., Sistemy svyazi s shumopodobnymi signalami, Radio i svyaz, M., 1985, 384 pp.

[8] Grigorev V. A., Grigorev S. V., Peredacha soobschenii, VUS, SPb., 2002, 224 pp.

[9] Takha Kh. \, Vvedenie v issledovanie operatsii, v 2-kh knigakh, per. s angl., Mir, M., 1985, 479 pp.

[10] Frenks L., Teoriya signalov, Per. s angl., Sov. radio, M., 1974, 344 pp.

[11] Gallager R., Teoriya informatsii i nadezhnaya svyaz, Per. s angl., pod red. Pinskera M. S. i Tsybakova B. S., Sovetskoe radio, M., 1974, 720 pp. | Zbl

[12] Vasileva A. B., Tikhonov N. A., Integralnye uravneniya, 2-e izd. stereot., Fizmatlit, M., 2002, 160 pp.

[13] Krasnov M. L. i dr., Integralnye uravneniya, Nauka, M., 1968, 192 pp. | MR | Zbl

[14] Khorn R., Dzhonson Ch., Matrichnyi analiz, Per. s angl., Mir, M., 1989, 655 pp. | MR | Zbl

[15] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966, 576 pp. | MR | Zbl

[16] Khimmelblau D., Prikladnoe nelineinoe programmirovanie, Per. s angl., pod red. Bykhovskogo M. L., Mir, M., 1975