Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2009_21_12_a7, author = {G. S. Glushko and I. E. Ivanov and I. A. Kryukov}, title = {Computational method for turbulent supersonic flows}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {103--121}, publisher = {mathdoc}, volume = {21}, number = {12}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2009_21_12_a7/} }
TY - JOUR AU - G. S. Glushko AU - I. E. Ivanov AU - I. A. Kryukov TI - Computational method for turbulent supersonic flows JO - Matematičeskoe modelirovanie PY - 2009 SP - 103 EP - 121 VL - 21 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2009_21_12_a7/ LA - ru ID - MM_2009_21_12_a7 ER -
G. S. Glushko; I. E. Ivanov; I. A. Kryukov. Computational method for turbulent supersonic flows. Matematičeskoe modelirovanie, Tome 21 (2009) no. 12, pp. 103-121. http://geodesic.mathdoc.fr/item/MM_2009_21_12_a7/
[1] B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flows”, Computer Meth. Appl. Mech. Engn., 3:3 (1974), 269–289 | DOI | Zbl
[2] G. S. Glushko, I. E. Ivanov, I. A. Kpyukov, Raschet sverkhzvukovykh turbulentnykh techenii, Preprintm No 793, IPM RAN, M., 2006
[3] A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[4] A. Harten, B. Engquist, S. Osher, S. R. Chakravarthy, “Uniformly High Order Accurate Essentially Non-oscillatory Schemes, III”, J. Comp. Phys., 71 (1987), 231–303 | DOI | MR | Zbl
[5] N. S. Bakhvalov, Chislennye metody, Nauka, M., 1975, 632 pp.
[6] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR | Zbl
[7] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comp. Phys., 77 (1988), 439–471 | DOI | MR | Zbl
[8] E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, NY, 1999 | MR
[9] H. Guillard, A. Murrone, On the behaviour of upwind schemes in the low Mach number limit: II. Godunov type schemes, Rapport de reserche, INRIA, 2001, 41–89
[10] H. Guillard, C. Viozat, “On the behavior of upwind schemes in the low Mach number limit”, Computers and Fluids, 96 (1999), 28–63 | MR
[11] A. J. Chorin, “A numerical method for solving incompressible viscous flow problems”, J. Comp. Phys., 2 (1967), 2–12 | Zbl
[12] E. Turkel, “Preconditioned methods for solving the incompressible and low speed compressible equations”, J. Comp. Phys., 72 (1987), 277–298 | DOI | Zbl
[13] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, FIZMATLIT, M., 2001, 608 pp. | MR
[14] I. E. Ivanov, I. A. Kpyukov, “Kvazimonotonnyi metod povyshennogo poryadka dlya rascheta vnutrennikh i struinykh techenii nevyazkogo gaza”, Matematicheskoe modelirovanie, 8:6 (1996), 47–55 | MR | Zbl
[15] N. I. Tillyaeva, “Obobschenie modifitsirovannoi skhemy S. K. Godunova na proizvolnye neregulyarnye setki”, Uchenye zapiski TsAGI, 17:2 (1986), 18–26
[16] R. F. Kunz, B. Lakshminarayana, “Stability of explicit Navier–Stokes procedures using $k-\varepsilon$ and $k-\varepsilon$/algebraic Reynolds stress turbulence models”, J. Comp. Phys., 103 (1992), 141–159 | DOI | Zbl
[17] G. A. Gerolymos, “Implicit Multiple grid solution of the compressible Navier–Stokes equations using $k-\varepsilon$ turbulence closure”, AIAA J., 28:10 (1990), 1707–1717 | DOI
[18] F. R. Menter, “Zonal two-equation $k-\omega$ models for aerodynamics flow”, AIAA Pap., 1993, 93–2906
[19] L. D. Kral, M. Mani, J. A. Ladd, “Application of turbulence models for aerodynamic and propulsion flowfields”, AIAA J., 34:11 (1996), 2291–2298 | DOI | Zbl
[20] S. B. Pope, Turbulent Flows, Cambridge University Press, 2000 | MR | Zbl
[21] C. H. Park, S. O. Park, “On the limiters of two-equation turbulence models”, Int. J. CFD, 19:1 (2005), 79–86 | Zbl
[22] F. Liu, X. Zheng, “A Strongly Coupled Time-Marching Method for Solving the Navier–Stokes and $k-\omega$ Turbulence Model Equations with Multigrid”, J. Comp. Phys., 128:2 (1996), 289–300 | DOI | Zbl
[23] F. Ilinca, D. Pelletier, “Positivity preservation and adaptive solution for the $k-\varepsilon$ model of turbulence”, AIAA Pap., 1997, 97–0205
[24] G. L. Vasiltsov, G. S. Glushko, I. A. Kpyukov, Raschet turbulentnykh techenii v oblastyakh slozhnoi geometricheskoi formy, Preprint No 608, IPMekh RAN, 1998
[25] S.-E. Kim, D. Choudhury, “A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient”, Separated and Complex Flows, ASME FED, 217, 1995
[26] F. M. White, Viscous Fluid Flow, McGraw-Hill, NY, 1974, 523 pp. | Zbl
[27] J. M. Seiner, T. D. Norum, “Experiments of shock associated noise on supersonic jets”, AIAA Pap., 1979, 79–1526
[28] C. A. Hunter, “Experimental, theoretical, and computational investigation of separated nozzle flows”, AIAA Pap., 1998, 98–3107