Mathematical modeling of dynamics of fast phase transitions and overheated metastable states during nano- and femtosecond laser treatment of metal targets
Matematičeskoe modelirovanie, Tome 21 (2009) no. 11, pp. 99-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

For mathematical description of pulsed laser heating, melting and evaporation of aluminium target in ambient atmosphere was used one dimensional, multi front hydrodynamic Stephan problem, written for both phases (liquid and solid). On the boundary of solid and gaseous forms Stephan problem is combined with radiation gas dynamic equations, with thermo conductivity, and describes processes in evaporated material and surrounding gas. For numerical solution finite difference dynamic adaptation method, which gives opportunity of explicit tracking of inter phase boundaries and shockwaves. As a result, in the process of the solution the problem had 6 computation regions and 7 boundaries, 6 of them were moving, including 2 shockwaves and free boundary in atmosphere. We used this model to calculate pulsed laser interaction with aluminum target with following parameters: $\lambda=0.8$, $\tau=10^{-8}\div10^{-15}$ s and $G_0=10^9\div10^{16}$ W/cm$^2$. Modeling revealed that in case of long $\sim1$ ns pulses greater part of the energy is spend on melting and heating of the liquid. Molten pool depth is about 1.2 $\mu$m. In case of femtosecond pulses greater part of the energy is spend on heating of the solid and for the formation of shockwave in solid. The depth of the molten pool does not exceeds 0.03 m. Although evaporated layers were almost the same thickness. For nanosecond laser pulses with fluence $J$ less than 30 J/cm$^2$ there is no plasma formation in the evaporated material. For the same fluence for femtosecond laser pulse plasma is formed after the pulse and has thermal nature.
@article{MM_2009_21_11_a8,
     author = {V. I. Mazhukin and A. V. Mazhukin and M. G. Lobok},
     title = {Mathematical modeling of dynamics of fast phase transitions and overheated metastable states during nano- and femtosecond laser treatment of metal targets},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--112},
     publisher = {mathdoc},
     volume = {21},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_11_a8/}
}
TY  - JOUR
AU  - V. I. Mazhukin
AU  - A. V. Mazhukin
AU  - M. G. Lobok
TI  - Mathematical modeling of dynamics of fast phase transitions and overheated metastable states during nano- and femtosecond laser treatment of metal targets
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 99
EP  - 112
VL  - 21
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_11_a8/
LA  - ru
ID  - MM_2009_21_11_a8
ER  - 
%0 Journal Article
%A V. I. Mazhukin
%A A. V. Mazhukin
%A M. G. Lobok
%T Mathematical modeling of dynamics of fast phase transitions and overheated metastable states during nano- and femtosecond laser treatment of metal targets
%J Matematičeskoe modelirovanie
%D 2009
%P 99-112
%V 21
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_11_a8/
%G ru
%F MM_2009_21_11_a8
V. I. Mazhukin; A. V. Mazhukin; M. G. Lobok. Mathematical modeling of dynamics of fast phase transitions and overheated metastable states during nano- and femtosecond laser treatment of metal targets. Matematičeskoe modelirovanie, Tome 21 (2009) no. 11, pp. 99-112. http://geodesic.mathdoc.fr/item/MM_2009_21_11_a8/

[1] W. W. Duley, UV Lasers: Effects and Applications in Materials Science, Cambridge University Press, 1996, 407 pp.

[2] V. I. Mazhukin, A. A. Samarskii, “Mathematical Modeling in the Technology of Laser Treatments of Materials”, Review, Surveys on Mathematics for Industry, 4:2 (1994), 85–149 | MR | Zbl

[3] K. Sokolowski-Tinten, D. von der Linde, “Generation of dense electron-hole plasmas in silicon”, Phys. Rev. B, 61 (2000), 2643–2650 | DOI

[4] V. M. Gordienko, M. S. Dzhidzhoev, V. V. Kolchin, S. A. Magnitskii, V. T. Platonenko, A. B. Savelev, A. P. Tarasevich, “O vozmozhnosti generatsii piko- i subpikosekundnykh rentgenovskikh impulsov v tonkikh plënkakh”, Kvantovaya elektronika, 22:2 (1995), 158–160

[5] J. C. Miller (ed.), Laser Ablation. Principles and Applications, Springer, Berlin, 1994, 185

[6] A. A. Vedenov, G. G. Gladush, Fizicheskie protsessy pri lazernoi obrabotke materialov, Energoatomizdat, M., 1985, 206 pp.

[7] A. A. Samokhin, “Deistvie lazernogo izlucheniya na pogloschayuschie kondensirovannye sredy”, Trudy IOFAN, 13, 1988, 1–119

[8] V. I. Mazhukin, M. G. Lobok, I. Smurov, “Transient effects in pulsed laser irradiation”, Appl. Surface Science, 253 (2007), 7744–7748 | DOI

[9] G. P. Pinho, H. Schittenhelm, W. W. Duley, S. A. Schueter, H. R. Jamani, R. E. Mueller, “Energy Distributions in the Laser Ablation of Metals and Polymers”, Appl. Surf. Science, 127–129 (1998), 983–987 | DOI

[10] V. I. Mazhukin, V. V. Nossov, I. Smurov, “Modeling of plasma-controlled evaporation and surface condensation of Al induced de 1.06 and 0.248 $\mu m$ laser radiations”, Applied Physics, 101:2 (2007), 24922–24937 | DOI | MR

[11] A. Peterlongo, A. Miotello, R. Kelly, “E. Laser-pulse sputtering of aluminum: Vaporization, boiling superheating, and gas-dynamic effects”, Phys. Rev., 50:6 (1994), 4716–4727

[12] D. von der Linde, “A picosecond view of melting”, Science, 302 (2003), 1345–1346 | DOI

[13] H. Iglev, M. Schmeisser, K. Simeonidis, A. Thaller, A. Laubereau, “Ultrafast superheating and melting of bulk ice”, Nature, 439 (2006), 183–186 | DOI

[14] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, “Precise deep drilling of metals by femtosecond laser pulses”, Appl. Phys. A, 63 (1996), 105–109 | DOI

[15] M. D. Shirk, P. A. Molian, “A review of ultrashort pulsed laser ablation of materials”, J. Laser Application, 10:1 (1998), 18–28

[16] K. Sokolowski-Tinten, D. von der Linde, “Ultrafast phase transitions and lattice dynamics probed using laser-produced X-ray pulses”, J. Phys. Cond. Mat., 16 (2004), R1517–R1536 | DOI

[17] D. Boschetto, E. G. Gamaly, A. V. Rode, B. Luther-Davies, D. Glijer, T. Garl, O. Albert, A. Rousse, J. Etchepare, “Small Atomic Displacements Recorder in Bismuth by the Optical Reflectivity of Femtosecond Laser-Pulse Excitations”, Phys. Rev. Lett., 100 (2008), 027404-1–027404-4 | DOI

[18] E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics”, Phys. Plasmas, 9 (2002), 949–957 | DOI

[19] Zh. Lin, L. V. Zhigilei, “Thermal excitation of d band electrons in Au: implications for laser-induced phase transformations”, Proc. of SPIE, 6261 (2006), 62610U-1–62610U-10 | DOI

[20] Zh. I. Alfërov, Yu. V. Kovalchuk, Yu. I. Pogorelskii, O. V. Smolskii, “Vozdeistvie pikosekundnykh lazernykh impulsov na Si i poluprovodnikovye soedineniya $\mathrm A^3\mathrm B^5$”, Izvestiya AN SSSR. Ser. Fiz., 49:6 (1985), 1069–1075

[21] X. Xu, C. Grigoropoulos, R. E. Russo, “Measurements of Solid/Liquid Interface Temperature During Pulsed Excimer Laser Melting of Polysilicon Films”, Appl. Phys. Lett., 65:14 (1994), 1745–1747 | DOI

[22] V. I. Mazhukin, I. Smurov, G. Flamant, C. Dupuy, “Peculiarities of Laser Melting and Evaporation of Super-conducting Ceramics”, J. Thin Solid Films, 241 (1994), 109–113 | DOI

[23] V. I. Mazhukin, I. Smurov, G. Flamant, “Overheated Metastable States in Pulsed Laser Action on Ceramics”, J. Appl. Phys., 78:2 (1995), 1259–1270 | DOI

[24] S. Williamson, C. Mourou, J. C. H. Li, “Time-Resolved Laser-Induced Phase Transformation in Aluminum”, Phys. Rev. Lett., 52:26 (1984), 2364–2368 | DOI

[25] M. Kandyla, T. Shih, E. Mazur, “Femtosecond dynamics of the laser-induced solid-to-liquid phase transition in aluminum”, Phys. Rev. B, 75 (2007), 214107–214132 | DOI

[26] D. S. Ivanov, L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disinte-gration of metal films”, Phys. Rev. B, 68 (2003), 064114-1–064114-21 | DOI

[27] D. S. Ivanov, L. V. Zhigilei, “Channels of energy registribution in short-pulse laser interactions with metal targets”, Appl. Surface Science, 248 (2005), 433–439 | DOI

[28] V. I. Mazhukin, P. A. Prudkovskii, A. A. Samokhin, “O gazodinamicheskikh granichnykh usloviyakh na fronte ispareniya”, Matematicheskoe modelirovanie, 5:6 (1993), 3–10 | Zbl

[29] J. Lees, B. H. J. Williamson, “Combined very high pressure/high temperature calibration of the tetrahedral anvil apparatus, fusion curves of Zinc, Aluminum, Germanium and Silicon to 60 kilobars”, Nature Physics, 208:5007 (1965), T84–T85

[30] K. S. Holian, “A new equation of state for aluminum”, J. Appl. Phys., 59:1 (1986), 149–157 | DOI | MR

[31] P. V. Breslavskii, V. I. Mazhukin, “Dinamicheski adaptiruyuschiesya setki dlya vzaimodeistvuyuschikh razryvnykh reshenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 47:4 (2007), 717–737 | MR | Zbl

[32] G. Karslou, D. Eger, Teploprovodnost tvërdykh tel, Nauka, M., 1964, 448 pp.

[33] P. V. Breslavskii, V. I. Mazhukin, A. A. Samokhin, “O gidrodinamicheskom variante zadachi Stefana dlya veschestva v metastabilnom sostoyanii”, Doklady AN SSSR, 320:5 (1991), 1088–1092