Numerical determination of pressure and optimum activities of wells for solving boundary-value problem of two-phase filtration with the use of linear programming method
Matematičeskoe modelirovanie, Tome 21 (2009) no. 11, pp. 83-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical algorithm of calculation of pressure, bottom-hole pressures and optimum flow rates of wells of the two-phase filtration model in some water flooding element with boundary conditions I, II or mixed (boundary conditions I and II are given on separate parts of the border of an element) has been developed. For determination of pressure on the suggested algorithm, the modified simplex method with representation of Linear Programming problem matrix in a multiplicative form is used. The algorithm was tested when carrying out the computing experiments for series of homogeneous and heterogeneous seams water flooding elements with various boundary conditions. For conditions of II application limits of algorithm are shown considering the fulfillment of the balance ratio for the movement equation in the field of two-phase filtration. The flow rates of the working wells have been compared with similar flow rates, received with the use of the method of alternating directions. This comparison is true of the bottom-hole pressures.
@article{MM_2009_21_11_a7,
     author = {V. D. Slabnov and V. V. Skvortsov},
     title = {Numerical determination of pressure and optimum activities of wells for solving boundary-value problem of two-phase filtration with the use of linear programming method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--98},
     publisher = {mathdoc},
     volume = {21},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_11_a7/}
}
TY  - JOUR
AU  - V. D. Slabnov
AU  - V. V. Skvortsov
TI  - Numerical determination of pressure and optimum activities of wells for solving boundary-value problem of two-phase filtration with the use of linear programming method
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 83
EP  - 98
VL  - 21
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_11_a7/
LA  - ru
ID  - MM_2009_21_11_a7
ER  - 
%0 Journal Article
%A V. D. Slabnov
%A V. V. Skvortsov
%T Numerical determination of pressure and optimum activities of wells for solving boundary-value problem of two-phase filtration with the use of linear programming method
%J Matematičeskoe modelirovanie
%D 2009
%P 83-98
%V 21
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_11_a7/
%G ru
%F MM_2009_21_11_a7
V. D. Slabnov; V. V. Skvortsov. Numerical determination of pressure and optimum activities of wells for solving boundary-value problem of two-phase filtration with the use of linear programming method. Matematičeskoe modelirovanie, Tome 21 (2009) no. 11, pp. 83-98. http://geodesic.mathdoc.fr/item/MM_2009_21_11_a7/

[1] F. M. Mukhametzyanov, G. S. Salekhov, V. D. Chugunov, “Primenenie lineinogo programmirovaniya k resheniyu nekotorykh zadach razrabotki neftyanykh mestorozhdenii”, Neft i gaz, 1960, no. 9, 73–80

[2] R. Bellman, E. Endzhel, Dinamicheskoe programmirovanie i uravneniya v chastnykh proizvodnykh, Perevod s angl., Mir, M., 1974, 207 pp. | MR | Zbl

[3] J. D. Powell, Nonlinear Optimization, Academic Press, 1982, 215 pp. | Zbl

[4] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969, 334 pp. | Zbl

[5] R. P. Fedorenko, Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978, 488 pp. | MR | Zbl

[6] M. V. Meerov, Issledovanie i optimizatsiya mnogosvyaznykh sistem upravleniya, Nauka, M., 1986, 236 pp. | MR | Zbl

[7] N. Dolle, D. R. Brouwer, J. D. Jansen, “Dynamic Optimization of Water Flooding with Multiple Injectors and Producers using Optimal Control Theory”, Proc. XIVth International Conference on Computational Methods in Water Resources, Delft, 2002, 23–28

[8] R. Gabasov, F. M. Kirillova, “Optimalnoe upravlenie v rezhime realnogo vremeni”, Vtoraya mezhdunarodnaya konferentsiya po problemam upravleniya, Sb. plenarn. dokl. (17–19 iyunya 2003 g.), IPU, M., 2003, 20–47

[9] B. I. Levi, V. I. Dzyuba, “O maksimizatsii summarnogo otbora nefti iz neodnorodnykh plastov”, Chislennye metody resheniya zadach mnogofaznoi neszhimaemoi zhidkosti, Trudy IV Vsesoyuznogo seminara, Novosibirsk, 1980, 139–145

[10] V. D. Slabnov, “Ob odnoi zadache intensifikatsii neftedobychi pri dvukhfaznoi filtratsii”, Matematicheskoe i fizicheskoe modelirovanie protsessov razrabotki neftyanykh mestorozhdenii i metodov povysheniya nefteotdachi plastov, Tezisy dokladov nauchno-prakticheskoi konferentsii (16–18 oktyabrya), Kazan, 1990, 104–105

[11] V. D. Slabnov, Yu. A. Volkov, V. V. Skvortsov, “Vliyanie nekotorykh faktorov regulirovaniya na osnovnye pokazateli nefteizvlecheniya iz neodnorodnogo plasta”, Matematicheskoe modelirovanie, 14:1 (2002), 3–15 | Zbl

[12] D. V. Bulygin, V. Ya. Bulygin, Geologiya i imitatsiya razrabotki zalezhei nefti, Nedra, M., 1996, 382 pp.

[13] Kh. Aziz, E. Settari, Matematicheskoe modelirovanie plastovykh sistem, Perev. s angl., Nedra, M., 1982, 407 pp.

[14] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977, 654 pp. | MR | Zbl

[15] V. D. Slabnov, “Mathematical simulation of the oil production regulation process from inhomogeneous reservoir”, Proceedings of the International Conference “Complex systems: control and modeling problems” (June 15–17, 1999, Samara, Russia), Samarskii nauchnyi tsentr RAN, Samara, 1999, 72–76

[16] V. D. Slabnov, R. A. Sultanov, R. V. Sadovnikov (ispolniteli), Sozdanie chislennogo algoritma regulirovaniya razrabotki obvodnennogo sloisto-neodnorodnogo plasta za schet optimizatsii rezhimov raboty i intervalov vskrytiya skvazhin. Etap 2003 g: Matematicheskoe modelirovanie 2D dvukhfaznoi filtratsii v sloistykh plastakh, neodnorodnykh kak po dline, tak i po tolschine, Otchet NIR AN RT, Kazan, 2003, 45 pp.

[17] U. Kh. Malkov, “Obzor putei povysheniya effektivnosti multiplikativnogo algoritma simpleks-metoda”, Matematicheskie metody resheniya ekonomicheskikh zadach, Nauka, M., 1977, 30–50 | MR

[18] V. D. Slabnov, Yu. A. Volkov, “To a problem of optimum oil production process control from seams, developed with application of horizontal wells”, Vtoraya mezhdunar. konferentsiya po problemam upravleniya, Izbrannye trudy v dvukh tomakh, T. 2 (17–19 iyunya 2003 g.), IPM RAN, M., 2003, 57–67