Mathematical models and equilibrium in irreversible economic
Matematičeskoe modelirovanie, Tome 21 (2009) no. 11, pp. 47-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system at issue consists of a set of economic agents, an intermediate firm, and an economic reservoir. For this system a set of equilibrium states is considered. Models of irreversible economic are used for description of the system. It is shown for direct purchase process that the state of equilibrium depends on demand functions. If resource exchange process is barter or there exists either currency stock exchange or the economic reservoir or intermediate firm in the system then there is the only equilibrium state.
@article{MM_2009_21_11_a4,
     author = {A. M. Tsirlin},
     title = {Mathematical models and equilibrium in irreversible economic},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--56},
     publisher = {mathdoc},
     volume = {21},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_11_a4/}
}
TY  - JOUR
AU  - A. M. Tsirlin
TI  - Mathematical models and equilibrium in irreversible economic
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 47
EP  - 56
VL  - 21
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_11_a4/
LA  - ru
ID  - MM_2009_21_11_a4
ER  - 
%0 Journal Article
%A A. M. Tsirlin
%T Mathematical models and equilibrium in irreversible economic
%J Matematičeskoe modelirovanie
%D 2009
%P 47-56
%V 21
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_11_a4/
%G ru
%F MM_2009_21_11_a4
A. M. Tsirlin. Mathematical models and equilibrium in irreversible economic. Matematičeskoe modelirovanie, Tome 21 (2009) no. 11, pp. 47-56. http://geodesic.mathdoc.fr/item/MM_2009_21_11_a4/

[1] Popkov Yu. S., Teoriya makrosistem, ravnovesnye modeli, URSS, M., 1999 | MR

[2] Lichnerowicz M., Lichnerowicz A., Economie et Thermodynamique: Un Modele dechange economique, Economies et Societes, 5, 1971

[3] Samuelson P. A., “Maximum Principle in Analytical Economics”, The Am. Econ. Rev., B2 (1972), 249–262 | MR

[4] Rozonoer L. I., “Obmen i raspredelenie resursov (obobschennyi termodinamicheskii podkhod). I”, Avtomatika i Telemekhanika, 1973, no. 5, 115–132 ; “II”, no. 6, 65–79 ; “III”, no. 8, 82–103

[5] Rozonoer L. I., Malishevskii A. V., “Model khaoticheskogo obmena resursami i analogii mezhdu termodinamikoi i ekonomikoi”, Vsesoyuznoe soveschanie po problemam upravleniya, Referaty dokladov, 1971, 207–209

[6] Amelkin S. A., Martinash K., Tsirlin A. M., “Optimalnye protsessy v neobratimykh termodinamicheskikh i mikroekonomicheskikh sistemakh (obzor)”, Avtomatika i telemekhanika, 2002, no. 4, 3–25 | MR

[7] Martinas K., “Irreversible microeconomics”, Complex Systems in Natural and Economic Sciences, eds. K. Martinas, M. Moreau, Matrafured, 1995

[8] Ayres R. U., Martinas K. A., “Non-equilibrium evolutionary economic theory”, Economics and thermodynamics: new perspectives on economic analysis, eds. P. Burley, J. Foster, Kluwer Academic Publishers, Boston, 1994, 73–98

[9] Tsirlin A. M., Matematicheskie modeli i optimalnye protsessy v makrosistemakh, Nauka, M., 2006

[10] Pospelov I. G., Modeli ekonomicheskoi dinamiki, osnovannye na ravnovesii prognozov ekonomicheskikh agentov, VTs RAN, M., 2003 | MR

[11] Tsirlin A. M., “Optimalnye protsessy v otkrytykh upravlyaemykh makrosistemakh”, Avtomatika i telemekhanika, 2006, no. 1, 146–157 | MR