About one choice of essentially non-oscillatory high occuracy order difference scheme for systems of conservation laws
Matematičeskoe modelirovanie, Tome 21 (2009) no. 11, pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Version of essentially non-oscillatory high occuracy order difference scheme for systems of conservation laws, based on minimization for norm of interpolation polynomial deviation from the cell averages was suggested in this paper. Such choice can give more monotonous solution in comparision with traditional ENO and WENO schemes of corresponding occuracy order, that was confirmed by results of numerical calculation for model problems.
@article{MM_2009_21_11_a2,
     author = {M. E. Ladonkina and O. A. Neklyudova and V. F. Tishkin and V. S. Chevanin},
     title = {About one choice of essentially non-oscillatory high occuracy order difference scheme for systems of conservation laws},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {21},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_11_a2/}
}
TY  - JOUR
AU  - M. E. Ladonkina
AU  - O. A. Neklyudova
AU  - V. F. Tishkin
AU  - V. S. Chevanin
TI  - About one choice of essentially non-oscillatory high occuracy order difference scheme for systems of conservation laws
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 19
EP  - 32
VL  - 21
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_11_a2/
LA  - ru
ID  - MM_2009_21_11_a2
ER  - 
%0 Journal Article
%A M. E. Ladonkina
%A O. A. Neklyudova
%A V. F. Tishkin
%A V. S. Chevanin
%T About one choice of essentially non-oscillatory high occuracy order difference scheme for systems of conservation laws
%J Matematičeskoe modelirovanie
%D 2009
%P 19-32
%V 21
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_11_a2/
%G ru
%F MM_2009_21_11_a2
M. E. Ladonkina; O. A. Neklyudova; V. F. Tishkin; V. S. Chevanin. About one choice of essentially non-oscillatory high occuracy order difference scheme for systems of conservation laws. Matematičeskoe modelirovanie, Tome 21 (2009) no. 11, pp. 19-32. http://geodesic.mathdoc.fr/item/MM_2009_21_11_a2/

[1] A. Harten, B. Engquist, S. Osher, S. R. Chakravarthy, “Uniformly high order accurate essentially non-oscillatory schemes, III”, Journal of Computational Physics, 71 (1987), 231–303 | DOI | MR | Zbl

[2] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock capturing schemes”, Journal of Computational Physics, 77 (1988), 439–471 | DOI | MR | Zbl

[3] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock capturing schemes, II”, Journal of Computational Physics, 83 (1989), 32–78 | DOI | MR | Zbl

[4] X.-D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, Journal of Computational Physics, 115 (1994), 200–212 | DOI | MR | Zbl

[5] G. Jiang, C.-W. Shu, “Efficient implementation of weighted ENO schemes”, Journal of Computational Physics, 126 (1996), 202–228 | DOI | MR | Zbl

[6] A. Iske, T. Soner, “On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions”, Numerische Mathematik, 74 (1996), 177–201 | DOI | MR | Zbl

[7] S. Christofi, The study of building blocks for ENO schemes, Ph. D. thesis, Division of Applied Mathematics, Brown University, September 1995

[8] A. Harten, “ENO schemes with subcell resolution”, Journal of Computational Physics, 83 (1989), 148–184 | DOI | MR | Zbl

[9] H. Yang, “An artificial compression method for ENO schemes, the slope modification method”, Journal of Computational Physics, 89 (1990), 125–160 | DOI | MR | Zbl

[10] R. Abgrall, “On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation”, Journal of Computational Physics, 114 (1994), 45–58 | DOI | MR | Zbl

[11] C.-W. Shu, Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, ICASE Report No 97-65, 1997 | MR

[12] S. K. Godunov, Uravneniya matematicheskoi fiziki, Izd. 2-e, Nauka, Glavnaya redaktsiya fiz.-mat. literatury, M., 1979 | MR | Zbl

[13] A. A. Samarskii, Yu. P. Popov, Raznostnye metoda resheniya zadach gazovoi dinamiki, Nauka, M., 1992 | MR

[14] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[15] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7 (1954), 159–193 | DOI | MR | Zbl

[16] J. Naber, Building your own shock tube, Report MAS-E0502, January 2005

[17] P. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, Journal of Computational Physics, 54 (1984), 115–173 | DOI | MR | Zbl

[18] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Mat. sbornik, 47(89):3 (1959), 271–306 | MR | Zbl