Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2009_21_10_a5, author = {F. S. Zaitsev}, title = {Construction of substantially different solutions of inverse problem for toroidal plasma equilibrium equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {58--66}, publisher = {mathdoc}, volume = {21}, number = {10}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2009_21_10_a5/} }
TY - JOUR AU - F. S. Zaitsev TI - Construction of substantially different solutions of inverse problem for toroidal plasma equilibrium equation JO - Matematičeskoe modelirovanie PY - 2009 SP - 58 EP - 66 VL - 21 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2009_21_10_a5/ LA - ru ID - MM_2009_21_10_a5 ER -
F. S. Zaitsev. Construction of substantially different solutions of inverse problem for toroidal plasma equilibrium equation. Matematičeskoe modelirovanie, Tome 21 (2009) no. 10, pp. 58-66. http://geodesic.mathdoc.fr/item/MM_2009_21_10_a5/
[1] Yu. N. Dnestrovskii, D. P. Kostomarov, Matematicheskoe modelirovanie plazmy, pervoe izdanie, Nauka, M., 1982, 320 pp.; второе издание, 1993, 336 с.; Yu. N. Dnestrovskij, D. P. Kostomarov, Numerical Simulations of Plasmas, Springer-Verlag, New York, 1986 | Zbl
[2] F. S. Zaitsev, Matematicheskoe modelirovanie evolyutsii toroidalnoi plazmy, MAKS Press, M., 2005, 524 pp.
[3] Yu. N. Dnestrovskii, D. P. Kostomarov, “Matematicheskie zadachi diagnostiki plazmy”, Nekorrektnye zadachi estestvoznaniya, ed. A. N. Tikhonov, A. V. Goncharskii, MGU, M., 1987, 103–134
[4] A. S. Demidov, L. E. Zakharov, “Pryamaya i obratnaya zadachi v teorii ravnovesiya plazmy”, Uspekhi Matem. Nauk, 29:6 (1974), 203
[5] Lao L. L. et al., “Reconstruction of current profile parameters and plasma shapes in tokamaks”, Nucl. Fusion, 25 (1985), 1611–1622
[6] P. N. Vabishchevich, I. V. Zotov, “Reconstruction of the longitudual current density in a tokamak from magnetic measurements”, Sov. J. Plasma Phys., 14:11 (1988), 759–764
[7] A. S. Demidov, V. V. Petrova, V. M. Silantiev, “On inverse and direct free boundary problems in the theory of plasma equilibrium in a Tokamak”, C. R. Acad. Sci. Paris Série I, 323 (1996), 353–358 | MR | Zbl
[8] J. Blum, H. Buvat, “An inverse problem in plasma physics: the identification of the current density profile in a tokamak”, Large-scale optimization with applications, Part I (Minneapolis, MN, 1995), IMA volumes in mathematics and its applications, 92, 1997, 17–36 | MR | Zbl
[9] F. S. Zaitsev, A. B. Trefilov, R. J. Akers, “An Algorithm for Reconstruction of Plasma Parameters Using Indirect Measurements”, 30th European Conference on Controlled Fusion and Plasma Physics, ECA, 27A, St. Petersburg, 2003, 2.70; http://epsppd.epfl.ch
[10] D. P. Kostomarov, F. S. Zaitsev, A. A. Lukyanitsa, “Rekonstruktsiya ravnovesiya toroidalnoi plazmy po dannym opticheskoi i magnitnoi diagnostik”, DAN, 404:6 (2005), 753–756 | MR
[11] D. P. Kostomarov, F. S. Zaitsev, A. A. Lukyanitsa, A. B. Trefilov, Yu. A. Kuznetsov, V. V. Zlobin, “Vosstanovlenie parametrov toroidalnoi plazmy po magnitnym i opticheskim izmereniyam”, Mat. Modelirovanie, 17:12 (2005), 3–26 | MR | Zbl
[12] D. P. Kostomarov, F. S. Zaitsev, “Samosoglasovannaya rekonstruktsiya evolyutsii ravnovesnoi konfiguratsii toroidalnoi plazmy”, Vestnik Moskovskogo universiteta. Seriya 15. Vychislitelnaya matematika i kibernetika, 2006, no. 3, 35–43 | MR | Zbl
[13] L. E. Zakharov, The theory of variances of equilibrium reconstruction, , 2007 http://w3.pppl.gov/~zakharov
[14] V. D. Pustovitov, “Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems”, Nucl. Fusion, 41 (2001), 721–730 | DOI
[15] F. S. Zaitsev, A. G. Shishkin, D. P. Kostomarov, M. R. O'Brien, R. J. Akers, M. Gryaznevich, A. B. Trefilov, A. S. Yelchaninov, “The Numerical Solution of the Self-Consistent Evolution of Plasma Equilibria”, Comp. Phys. Comm., 157:2 (2004), 107–120 | DOI | MR
[16] A. S. Demidov, “O rekonstruktsii polinomialnykh nelineinostei v uravneniyakh matematicheskoi fiziki”, Intern. Confer. “Diff. Equations and Related Topics” dedicated to I. G. Petrovskii, Book of Abstracts, Moscow, 2007, 73–74
[17] A. S. Demidov, A. S. Kochurov, A. Yu. Popov, “K zadache o rekonstruktsii nelineinostei v uravneniyakh matematicheskoi fiziki”, Trudy seminara im. I. G. Petrovskogo, 2008
[18] S. I. Bezrodnykh, V. I. Vlasov, A. S. Demidov, “O chisle reshenii obratnoi zadachi dlya uravneniya Gelmgoltsa”, Matem. zametki (to appear)
[19] E. Beretta, M. Vogelius, “An inverse problem originating from magnethohydrodynamics, II. The case of the Grad–Shafranov equation”, Indiana Univ. Math. J., 41 (1992), 1081–1118 | DOI | MR | Zbl
[20] E. Beretta, M. Vogelius, “An inverse problem originating from magnethohydrodynamics, III. Domains wich corners of arbitrary angles”, Asymptotic Analysis, 11 (1995), 289–315 | MR | Zbl
[21] A. S. Demidov, “Ob obratnoi zadache dlya uravneniya Greda–Shafranova s affinnoi pravoi chastyu”, Uspekhi Matem. Nauk, 55:6 (2000), 131–132 | MR | Zbl
[22] A. S. Demidov, M. Moussaoui, “An inverse problem originating from magneto-hydro-dynamics”, Inverse Problems, 20:1 (2004), 137–154 | DOI | MR | Zbl
[23] V. D. Shafranov, Ravnovesie plazmy v magnitnom pole, Voprosy teorii plazmy, 2, Gosatomizdat, M., 1963, 92–131