Construction of substantially different solutions of inverse problem for toroidal plasma equilibrium equation
Matematičeskoe modelirovanie, Tome 21 (2009) no. 10, pp. 58-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to reconstruction of current density in toroidal plasma using experimentally measured data. The toroidal current density is characterized by two functions in the right hand side of Grad–Shafranov equation, which together with the poloidal flux are to be determined. The question about uniqueness of the solution of the inverse problem was usually not addressed in numerical methods developed over recent decades. However, theoretical study of this question for simplified models showed possibility of existence of substantially different solutions. For correct understanding of physical properties of a pulse it is necessary to analyze all possible solutions of the inverse problem in its physically correct formulation. This formulation is presented in the paper. A new numerical method for determining of all substantially different solutions of the inverse problem is proposed. Examples of existence of such solutions are constructed for close to experimental plasma parameters.
@article{MM_2009_21_10_a5,
     author = {F. S. Zaitsev},
     title = {Construction of substantially different solutions of inverse problem for toroidal plasma equilibrium equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {58--66},
     publisher = {mathdoc},
     volume = {21},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_10_a5/}
}
TY  - JOUR
AU  - F. S. Zaitsev
TI  - Construction of substantially different solutions of inverse problem for toroidal plasma equilibrium equation
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 58
EP  - 66
VL  - 21
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_10_a5/
LA  - ru
ID  - MM_2009_21_10_a5
ER  - 
%0 Journal Article
%A F. S. Zaitsev
%T Construction of substantially different solutions of inverse problem for toroidal plasma equilibrium equation
%J Matematičeskoe modelirovanie
%D 2009
%P 58-66
%V 21
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_10_a5/
%G ru
%F MM_2009_21_10_a5
F. S. Zaitsev. Construction of substantially different solutions of inverse problem for toroidal plasma equilibrium equation. Matematičeskoe modelirovanie, Tome 21 (2009) no. 10, pp. 58-66. http://geodesic.mathdoc.fr/item/MM_2009_21_10_a5/

[1] Yu. N. Dnestrovskii, D. P. Kostomarov, Matematicheskoe modelirovanie plazmy, pervoe izdanie, Nauka, M., 1982, 320 pp.; второе издание, 1993, 336 с.; Yu. N. Dnestrovskij, D. P. Kostomarov, Numerical Simulations of Plasmas, Springer-Verlag, New York, 1986 | Zbl

[2] F. S. Zaitsev, Matematicheskoe modelirovanie evolyutsii toroidalnoi plazmy, MAKS Press, M., 2005, 524 pp.

[3] Yu. N. Dnestrovskii, D. P. Kostomarov, “Matematicheskie zadachi diagnostiki plazmy”, Nekorrektnye zadachi estestvoznaniya, ed. A. N. Tikhonov, A. V. Goncharskii, MGU, M., 1987, 103–134

[4] A. S. Demidov, L. E. Zakharov, “Pryamaya i obratnaya zadachi v teorii ravnovesiya plazmy”, Uspekhi Matem. Nauk, 29:6 (1974), 203

[5] Lao L. L. et al., “Reconstruction of current profile parameters and plasma shapes in tokamaks”, Nucl. Fusion, 25 (1985), 1611–1622

[6] P. N. Vabishchevich, I. V. Zotov, “Reconstruction of the longitudual current density in a tokamak from magnetic measurements”, Sov. J. Plasma Phys., 14:11 (1988), 759–764

[7] A. S. Demidov, V. V. Petrova, V. M. Silantiev, “On inverse and direct free boundary problems in the theory of plasma equilibrium in a Tokamak”, C. R. Acad. Sci. Paris Série I, 323 (1996), 353–358 | MR | Zbl

[8] J. Blum, H. Buvat, “An inverse problem in plasma physics: the identification of the current density profile in a tokamak”, Large-scale optimization with applications, Part I (Minneapolis, MN, 1995), IMA volumes in mathematics and its applications, 92, 1997, 17–36 | MR | Zbl

[9] F. S. Zaitsev, A. B. Trefilov, R. J. Akers, “An Algorithm for Reconstruction of Plasma Parameters Using Indirect Measurements”, 30th European Conference on Controlled Fusion and Plasma Physics, ECA, 27A, St. Petersburg, 2003, 2.70; http://epsppd.epfl.ch

[10] D. P. Kostomarov, F. S. Zaitsev, A. A. Lukyanitsa, “Rekonstruktsiya ravnovesiya toroidalnoi plazmy po dannym opticheskoi i magnitnoi diagnostik”, DAN, 404:6 (2005), 753–756 | MR

[11] D. P. Kostomarov, F. S. Zaitsev, A. A. Lukyanitsa, A. B. Trefilov, Yu. A. Kuznetsov, V. V. Zlobin, “Vosstanovlenie parametrov toroidalnoi plazmy po magnitnym i opticheskim izmereniyam”, Mat. Modelirovanie, 17:12 (2005), 3–26 | MR | Zbl

[12] D. P. Kostomarov, F. S. Zaitsev, “Samosoglasovannaya rekonstruktsiya evolyutsii ravnovesnoi konfiguratsii toroidalnoi plazmy”, Vestnik Moskovskogo universiteta. Seriya 15. Vychislitelnaya matematika i kibernetika, 2006, no. 3, 35–43 | MR | Zbl

[13] L. E. Zakharov, The theory of variances of equilibrium reconstruction, , 2007 http://w3.pppl.gov/~zakharov

[14] V. D. Pustovitov, “Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems”, Nucl. Fusion, 41 (2001), 721–730 | DOI

[15] F. S. Zaitsev, A. G. Shishkin, D. P. Kostomarov, M. R. O'Brien, R. J. Akers, M. Gryaznevich, A. B. Trefilov, A. S. Yelchaninov, “The Numerical Solution of the Self-Consistent Evolution of Plasma Equilibria”, Comp. Phys. Comm., 157:2 (2004), 107–120 | DOI | MR

[16] A. S. Demidov, “O rekonstruktsii polinomialnykh nelineinostei v uravneniyakh matematicheskoi fiziki”, Intern. Confer. “Diff. Equations and Related Topics” dedicated to I. G. Petrovskii, Book of Abstracts, Moscow, 2007, 73–74

[17] A. S. Demidov, A. S. Kochurov, A. Yu. Popov, “K zadache o rekonstruktsii nelineinostei v uravneniyakh matematicheskoi fiziki”, Trudy seminara im. I. G. Petrovskogo, 2008

[18] S. I. Bezrodnykh, V. I. Vlasov, A. S. Demidov, “O chisle reshenii obratnoi zadachi dlya uravneniya Gelmgoltsa”, Matem. zametki (to appear)

[19] E. Beretta, M. Vogelius, “An inverse problem originating from magnethohydrodynamics, II. The case of the Grad–Shafranov equation”, Indiana Univ. Math. J., 41 (1992), 1081–1118 | DOI | MR | Zbl

[20] E. Beretta, M. Vogelius, “An inverse problem originating from magnethohydrodynamics, III. Domains wich corners of arbitrary angles”, Asymptotic Analysis, 11 (1995), 289–315 | MR | Zbl

[21] A. S. Demidov, “Ob obratnoi zadache dlya uravneniya Greda–Shafranova s affinnoi pravoi chastyu”, Uspekhi Matem. Nauk, 55:6 (2000), 131–132 | MR | Zbl

[22] A. S. Demidov, M. Moussaoui, “An inverse problem originating from magneto-hydro-dynamics”, Inverse Problems, 20:1 (2004), 137–154 | DOI | MR | Zbl

[23] V. D. Shafranov, Ravnovesie plazmy v magnitnom pole, Voprosy teorii plazmy, 2, Gosatomizdat, M., 1963, 92–131