Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2009_21_10_a3, author = {V. G. Priymak}, title = {Eigenvalue problem for the {Navier--Stokes} operator in cylindrical coordinates}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {29--46}, publisher = {mathdoc}, volume = {21}, number = {10}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2009_21_10_a3/} }
V. G. Priymak. Eigenvalue problem for the Navier--Stokes operator in cylindrical coordinates. Matematičeskoe modelirovanie, Tome 21 (2009) no. 10, pp. 29-46. http://geodesic.mathdoc.fr/item/MM_2009_21_10_a3/
[1] Reynolds O., “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels”, Philos. Trans. Roy. Soc. London Ser. A, 174 (1883), 935–982 | DOI
[2] Drazin P. G., Reid W. H., Hydrodynamic Stability, Cambridge University Press, 1981 | MR | Zbl
[3] Herron I., “Observations on the role of vorticity in the stability theory of wall bounded flows”, Stud. Appl. Math., 85 (1991), 269–286 | MR | Zbl
[4] Gustavsson L. H., “Direct resonance of nonaxisymmetric disturbances in pipe flow”, Stud. Appl. Math., 80 (1989), 95–108 | MR | Zbl
[5] Schmid P. J., Henningson D. S., “Optimal energy density growth in Hagen–Poiseuille flow”, J. Fluid Mech., 277 (1994), 197–225 | DOI | MR | Zbl
[6] O'Sullivan P. L., Breuer K. S., “Transient growth in circular pipe flow. I. Linear disturbances”, Phys. Fluids, 6 (1994), 3643–3651 | DOI
[7] O'Sullivan P. L., Breuer K. S., “Transient growth in circular pipe flow. II. Nonlinear development”, Phys. Fluids, 6 (1994), 3652–3664 | DOI
[8] Gary J., Helgason R., “A matrix method for ordinary differential eigenvalue problems”, J. Comput. Phys., 5 (1970), 169–187 | DOI | MR | Zbl
[9] Garg V. K., Rouleau W. T., “Linear spatial stability of pipe Poiseuille flow”, J. Fluid Mech., 54 (1972), 113–127 | DOI | Zbl
[10] Priymak V. G., Miyazaki T., “Long-wave motions in turbulent shear flows”, Phys. Fluids, 6:10 (1994), 3454–3464 | DOI | Zbl
[11] Priymak V. G., “Pseudospectral algorithms for Navier–Stokes simulation of turbulent flows in cylindrical geometry with coordinate singularities”, J. Comput. Phys., 118 (1995), 366–379 | DOI | MR | Zbl
[12] Orszag S. A., Patera A. T., “Secondary instability of wall-bounded shear flows”, J. Fluid Mech., 128 (1983), 347–385 | DOI | Zbl
[13] Leonard A., Wray A., “A new numerical method for the simulation of three-dimensional flow in a pipe”, Proceedings, 8th Internat. Conf. Numer. Methods in Fluid Dynamics, Lecture Notes in Physics, 170, Springer, 1982, 335–342
[14] Tuckerman L. S., “Divergence-free velocity fields in nonperiodic geometries”, J. Comput. Phys., 80 (1989), 403–441 | DOI | MR | Zbl
[15] Khorrami M. R., Malik M. R., Ash R. L., “Application of spectral collocation techniques to the stability of swirling flows”, J. Comput. Phys., 81 (1989), 206–229 | DOI | Zbl
[16] Priymak V. G., Miyazaki T., “Accurate Navier–Stokes investigation of transitional and turbulent flows in a circular pipe”, J. Comput. Phys., 142 (1998), 370–411 | DOI | MR | Zbl
[17] Kleiser L., Schumann U., “Spectral simulations of the laminar-turbulent transition process in plane Poiseuille flow”, Spectral Methods for Partial Differential Equations, SIAM, Philadelphia, 1984, 141–163 | MR
[18] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, Moskva, 1980
[19] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A., Spectral methods in fluid dynamics, Springer-Verlag, Berlin–Heidelberg, 1988 | MR
[20] Marcus P. S., “Simulation of Taylor–Couette flow. Part 1. Numerical methods and comparison with experiment”, J. Fluid Mech., 146 (1984), 45–64 | DOI | Zbl
[21] Orszag S. A., “Accurate solution of the Orr–Sommerfeld stability equations”, J. Fluid Mech., 50 (1971), 689–703 | DOI | Zbl