Synthesis of an implicit A-stable one-step second order schemes by the high order backward differentiation formulas
Matematičeskoe modelirovanie, Tome 21 (2009) no. 10, pp. 107-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

A routine ode23tb of MATLAB can be made more accurate and stable coincidentally by adding steps of 3-d and 4-th order backward differentiation formulas.
@article{MM_2009_21_10_a10,
     author = {V. N. Biryukov},
     title = {Synthesis of an implicit {A-stable} one-step second order schemes by the high order backward differentiation formulas},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--110},
     publisher = {mathdoc},
     volume = {21},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_10_a10/}
}
TY  - JOUR
AU  - V. N. Biryukov
TI  - Synthesis of an implicit A-stable one-step second order schemes by the high order backward differentiation formulas
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 107
EP  - 110
VL  - 21
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_10_a10/
LA  - ru
ID  - MM_2009_21_10_a10
ER  - 
%0 Journal Article
%A V. N. Biryukov
%T Synthesis of an implicit A-stable one-step second order schemes by the high order backward differentiation formulas
%J Matematičeskoe modelirovanie
%D 2009
%P 107-110
%V 21
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_10_a10/
%G ru
%F MM_2009_21_10_a10
V. N. Biryukov. Synthesis of an implicit A-stable one-step second order schemes by the high order backward differentiation formulas. Matematičeskoe modelirovanie, Tome 21 (2009) no. 10, pp. 107-110. http://geodesic.mathdoc.fr/item/MM_2009_21_10_a10/

[1] Kalitkin N. N., “Chislennye metody resheniya zhestkikh sistem”, Matematicheskoe modelirovanie, 7:5 (1995), 8–11 | Zbl

[2] Hairer E., Jay L. O., “Implicit Runge-Kutta methods for higher index differential-algebraic systems”, Contributions in Numerical Mathematics, World Sci. Ser. Appl. Anal., 2, World Scientific, River Edge, NJ, 1993, 213–224 | MR | Zbl

[3] Zhuk D. M., Manichev V. B., Ilnitskii A. O., “Metody i algoritmy resheniya differentsialno-algebraicheskikh uravnenii dlya modelirovaniya dinamiki tekhnicheskikh sistem i ob'ektov”, Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem, Sb. nauchnykh trudov, ed. A. L. Stempkovskii, IPPM RAN, M., 2008, 109–113

[4] Ketkov Yu. L., Ketkov A. Yu., Shults M. M., MATLAB 7: programmirovanie, chislennykh metodov, BKhV-Peterburg, SPb., 2005, 752 pp.

[5] Biryukov V. N., Zhestkie zadachi radioelektroniki, Dep. v VINITI, 05.03.07, No 196-V2007, TRTU, Taganrog, 2007, 126 pp.

[6] Petrov I. B., Lobanov A. I., Lektsii po vychislitelnoi matematike, Uchebnoe posobie, Internet-Universitet Informatsionnykh Tekhnologii, BINOM. Laboratoriya znanii, M., 2006, 523 pp.

[7] Kholl D., Uatt D., Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979, 312 pp.