Reserch of stability and efficiency of space rebalance acceleration method for linear transport problems
Matematičeskoe modelirovanie, Tome 20 (2008) no. 9, pp. 75-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Space-Dependent Rebalance (SDR) method [1–3] is considered for acceleration the inner iterations in solution of multigroup transport equations by the discrete ordinates Sn method in Pm approximation of scattering matrix. In this method the fictitious boundary flows was introduced on the mesh, given for the transport equation. The SDR method is described on example three-dimensional X-Y-Z geometry. The stability of this version of the rebalance method was not analyzed earlier. The results of Fourier analyses of stability of the SDR method are given. The stability of this method is proved. Numerical results are shown that the SDR method is converges faster than the consistent P1SA scheme [4] in one-dimensional geometry. The computations of radiation fields of reactor plant SVBR-75/100 [5] in three-dimensional X-Y-Z geometry by the Weighted-Difference scheme (WDIF) [6] showed that there are two factors, affecting on the efficiency of SDR: the choice of iteration number to begin the acceleration and the choice of parameter $\teta$ of WDIF scheme. The recommendations on optimal choice of these parameters are developed.
@article{MM_2008_20_9_a5,
     author = {E. P. Sychugova},
     title = {Reserch of stability and efficiency of space rebalance acceleration method for linear transport problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--93},
     publisher = {mathdoc},
     volume = {20},
     number = {9},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_9_a5/}
}
TY  - JOUR
AU  - E. P. Sychugova
TI  - Reserch of stability and efficiency of space rebalance acceleration method for linear transport problems
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 75
EP  - 93
VL  - 20
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_9_a5/
LA  - ru
ID  - MM_2008_20_9_a5
ER  - 
%0 Journal Article
%A E. P. Sychugova
%T Reserch of stability and efficiency of space rebalance acceleration method for linear transport problems
%J Matematičeskoe modelirovanie
%D 2008
%P 75-93
%V 20
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_9_a5/
%G ru
%F MM_2008_20_9_a5
E. P. Sychugova. Reserch of stability and efficiency of space rebalance acceleration method for linear transport problems. Matematičeskoe modelirovanie, Tome 20 (2008) no. 9, pp. 75-93. http://geodesic.mathdoc.fr/item/MM_2008_20_9_a5/

[1] W. W. Engle Jr., F. R. Mynatt, “A Comparison of Two Methods of Inner Iteration Convergence Acceleration in Discrete Ordinates Codes.”, J. Trans. Am. Nucl. Soc., 11 (1968), 193–194

[2] W. A. Rhoades, R. L. Childs, W. W. Engle Jr., “Comparison of Rebalance Stabilization Methods for Two-Dimensional Transport Calculations”, J. Trans. Am. Nucl. Soc., 30 (1978), 583

[3] W. A. Rhoades, “Improvements in Discrete Ordinates Acceleration”, J. Trans. Am. Nucl. Soc., 39 (1981), 753

[4] A. M. Voloschenko, A. V. Voronkov, E. P. Sychugova, Soglasovannaya $P_1SA$ skhema uskoreniya vnutrennikh i vneshnikh iteratsii dlya uravneniya perenosa neitronov i fotonov v odnomernykh geometriyakh v pakete REAKTOR, preprint No 2, IPM RAN, M., 1996

[5] Yu. G. Dragunov, V. S. Stepanov, N. N. Klimov, A. V. Dedul, S. N. Bolvanchikov, A. V. Zrodnikov, G. I. Toshinsky, O. G. Komlev, “Project of SVBR-75/100 reactor plant improved safety for nuclear sources of small and medium power”, 5th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids (May 16–20), Dubrovnik, Croatia, 2004

[6] W. A. Rhoades, W. W. Engle, “A New Weighted-Difference Formulation for Discrete Ordinates Calculations”, J. Trans. Am. Nucl. Soc., 27 (1977), 776–777

[7] E. L. Wachspress, Iterative Solution of Elliptic Systems and Applications to the Neutron Diffusion Equations of Reactor Physics, Chap. 9, Prentice-Hall, Englewood Cliffs, New Jersey, 1966 | MR | Zbl

[8] E. E. Lewis, W. F. Miller. Jr., Computational Methods of Neutron Transport, John Wiley Sons, New York, 1984

[9] G. Cefus, E. W. Larsen, “Stability Analysis of Fine-Mesh Rebalance”, J. Trans. Am. Nucl. Soc., 56 (1988), 309–310

[10] G. R. Cefus, E. W. Larsen, “Stability Analysis of Coarse-Mesh Rebalance”, J. Nucl. Sci. Eng., 105 (1990), 31–39

[11] W. H. Reed, “The Effectiveness of acceleration Techniques for Iterative Methods in Transport Theory”, J. Nucl. Sci. Eng., 45 (1971), 245–254

[12] Kh. Grinspen, K. Kelber, D. Okrent (red.), Vychislitelnye metody v fizike reaktorov, Atomizdat, Moskva, 1972

[13] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978 | MR

[14] E. W. Larsen, “Diffusion-Synthetic Acceleration Methods for Discrete-Ordinates Problems”, J. Transport Theory and Statistical Physics, 13:1–2 (1984), 107–126 | DOI | MR

[15] A. Voronkov, V. Arzhanov, ““REACTOR” – program System for Neutron – Physical Calculation”, Proc. Int. Top. Meeting, Advances in Mathematics, Computations and Reactor Physics, vol 1 (April 28–May 2), Pittsburg, USA, 1991

[16] G. N. Manturov, M. N. Nikolaev, A. M. Tsibulya, Programma podgotovki konstant CONSYST. Opisanie primeneniya, Preprint FEI-2828, Obninsk, 2000

[17] A. Isimaru, Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, t. 1, Mir, M., 1981

[18] B. G. Carlson, “A Method of Characteristics and Other Improvements in Solution Methods for the Transport Equation”, J. Nucl. Sci. Eng., 61 (1976), 408–425

[19] R. E. MacFarlane, "TRANSX-2: Code for Interfacing MATXS Cross-Section Libraries to Nuclear Transport Codes, LA-12312-MS, 1992 | MR