Generalized non-parametric method: the law of demand in prognosis problems
Matematičeskoe modelirovanie, Tome 20 (2008) no. 9, pp. 34-50

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to forecasting consumer demand based on generalized non-parametric method is developed. Necessary and sufficient conditions for trading statistics to be in a correspondence with the inverse function of demand, satisfying the Law of Demand were found. Warshall-Floyd algorithm verifies these conditions. This algorithm has polynomial complexity over the number of trading statistics points of time. Demand forecasting technique based on the analysis of trading statistics rationalization and the Law of Demand feasibility is suggested.
@article{MM_2008_20_9_a2,
     author = {V. A. Grebennikov and A. A. Shananin},
     title = {Generalized non-parametric method: the law of demand in prognosis problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {34--50},
     publisher = {mathdoc},
     volume = {20},
     number = {9},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_9_a2/}
}
TY  - JOUR
AU  - V. A. Grebennikov
AU  - A. A. Shananin
TI  - Generalized non-parametric method: the law of demand in prognosis problems
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 34
EP  - 50
VL  - 20
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_9_a2/
LA  - ru
ID  - MM_2008_20_9_a2
ER  - 
%0 Journal Article
%A V. A. Grebennikov
%A A. A. Shananin
%T Generalized non-parametric method: the law of demand in prognosis problems
%J Matematičeskoe modelirovanie
%D 2008
%P 34-50
%V 20
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_9_a2/
%G ru
%F MM_2008_20_9_a2
V. A. Grebennikov; A. A. Shananin. Generalized non-parametric method: the law of demand in prognosis problems. Matematičeskoe modelirovanie, Tome 20 (2008) no. 9, pp. 34-50. http://geodesic.mathdoc.fr/item/MM_2008_20_9_a2/