A variational method of hexahedral mesh generation with control metric
Matematičeskoe modelirovanie, Tome 20 (2008) no. 9, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

A variational method of constructing a spatial structured grid composed of hexahedral cells is presented. In the method, minimization of the variational functional is executed. The integrand of the functional is a ratio of the metric invariants. The functional depends on metric elements of two metrics. One metric is induced by a curvilinear mesh generated in the physical domain and the other control metric is responsible for an additional cell shape control, for instance, for condensing the coordinate surfaces and orthogonalization of the grid lines towards the domain boundary. The issues of mesh and cell non-degeneracy are discussed. The method of boundary nodes redistribution is considered. Examples of the grid construction are reported.
@article{MM_2008_20_9_a0,
     author = {B. N. Azarenok},
     title = {A variational method of hexahedral mesh generation with control metric},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {20},
     number = {9},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_9_a0/}
}
TY  - JOUR
AU  - B. N. Azarenok
TI  - A variational method of hexahedral mesh generation with control metric
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 3
EP  - 22
VL  - 20
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_9_a0/
LA  - ru
ID  - MM_2008_20_9_a0
ER  - 
%0 Journal Article
%A B. N. Azarenok
%T A variational method of hexahedral mesh generation with control metric
%J Matematičeskoe modelirovanie
%D 2008
%P 3-22
%V 20
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_9_a0/
%G ru
%F MM_2008_20_9_a0
B. N. Azarenok. A variational method of hexahedral mesh generation with control metric. Matematičeskoe modelirovanie, Tome 20 (2008) no. 9, pp. 3-22. http://geodesic.mathdoc.fr/item/MM_2008_20_9_a0/

[1] A. Winslow, “Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle mesh”, J. Comput. Phys., 1 (1966), 149–172 | DOI | MR | Zbl

[2] S. K. Godunov, G. P. Prokopov, “O raschetakh konformnykh otobrazhenii i postroenii raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 7:5 (1967), 1031–1059 | MR | Zbl

[3] J. F. Thompson, Z. U. A. Warsi, W. Mastin, Numerical Grid Generation, North-Holland, N.Y. etc., 1985 ; доступна на http://www.hpc.msstate.edu/ publications/gridbook/ | MR | Zbl

[4] P. Knupp, S. Steinberg, Fundamentals of Grid Generation, CRC Press, Boca Raton, Fl., 1993 | MR

[5] S. A. Ivanenko, Adaptivno-garmonicheskie setki, VTs RAN, M., 1997, 181 pp. | MR

[6] V. D. Liseikin, Grid Generation Methods, Springer-Verlag, New York, 1999 | MR | Zbl

[7] T. Radó, “Aufgabe 41, Jahresber”, Deutsche Math.-Verein, 35 (1926), 49

[8] P. Knupp, R. Luczak, “Truncation error in grid generation: a case study”, Numerical Methods for Partial Differential Equations, 11 (1995), 561–571 | DOI | MR | Zbl

[9] S. A. Ivanenko, A. A. Chapakhchyan, “Kpivolineinye setki iz vypuklykh chetypekhugolnikov”, Zh. vychisl. matem. i matem. fiz., 28:4 (1988), 503–514 | MR

[10] S. P. Spekreijse, “Elliptic generation systems”, Handbook of Grid Generation, Chapt. 4, eds. Thompson J. F., Soni B. K., Weatherill N. P., CRC Press, Boca Raton, FL, 1999, 1–48 | MR

[11] S. A. Ivanenko, “Upravlenie formoi yacheek v protsesse postroeniya setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1662–1684 | MR | Zbl

[12] R. S. Laugesen, “Injectivity can fail for higher-dimensional harmonic extensions”, Complex Variables, 28 (1996), 357–369 | MR | Zbl

[13] O. V. Ushakova, “Usloviya nevyrozhdennosti trekhmernykh yacheek. Formula dlya ob'ema yacheek”, Zh. vychisl. matem. i matem. fiz., 41:6 (2001), 881–894 | MR | Zbl

[14] O. V. Ushakova, “On nondegeneracy of three-dimensional grids”, Proc. Steklov Inst. of Math., Suppl. 1, 2004, S78–S100 | MR | Zbl

[15] J. F. Thompson, “A general three-dimensional elliptic grid generation system on a composite block structure”, Comp. Meth. in Appl. Mech. and Engin., 64 (1987), 377–411 | DOI | Zbl

[16] P. Knupp, “A method for hexahedral mesh shape optimization”, Int. J. Meth. Engng., 58 (2003), 319–332 | DOI | Zbl

[17] T. N. Bronina, I. A. Gasilova, O. V. Ushakova, “Algoritmy postroeniya trekhmernykh strukturirovannykh setok”, Zhurnal vychisl. matem. i matem. fiz., 43:6 (2003), 875–883 | MR | Zbl

[18] S. A. Ivanenko, “Variatsionnye metody postroeniya setok”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 830–844 | MR | Zbl

[19] G. P. Prokopov, Universalnye variatsionnye funktsionaly dlya postroeniya dvumernykh setok, Preprint No 1, IPM RAN, 2001, 36 pp.

[20] B. N. Azarenok, “Ob odnoi skheme rascheta detonatsionnykh voln na podvizhnykh setkakh”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2260–2282 | MR | Zbl

[21] N. A. Bobylev, S. A. Ivanenko, A. V. Kazunin, “O kusochno-gladkikh gomeomorfnykh otobrazheniyakh ogranichennykh oblastei i ikh prilozheniyakh k teorii setok”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 808–817 | MR | Zbl

[22] B. N. Azarenok, Ob odnom variatsionnom metode postroeniya prostranstvennykh setok, VTs RAN, M., 2006, 51 pp. | MR

[23] O. V. Ushakova, “Klassifikatsiya shestigrannykh yacheek”, Zh. vychisl. matem. i matem. fiz., 48:8 (2008), 1406–1428 | MR | Zbl