Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2008_20_8_a8, author = {O. A. Melnichenko and A. A. Romanyukha}, title = {A model of tuberculosis epidemiology. {Data} analysis and estimation of parameters}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {107--128}, publisher = {mathdoc}, volume = {20}, number = {8}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2008_20_8_a8/} }
TY - JOUR AU - O. A. Melnichenko AU - A. A. Romanyukha TI - A model of tuberculosis epidemiology. Data analysis and estimation of parameters JO - Matematičeskoe modelirovanie PY - 2008 SP - 107 EP - 128 VL - 20 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2008_20_8_a8/ LA - ru ID - MM_2008_20_8_a8 ER -
O. A. Melnichenko; A. A. Romanyukha. A model of tuberculosis epidemiology. Data analysis and estimation of parameters. Matematičeskoe modelirovanie, Tome 20 (2008) no. 8, pp. 107-128. http://geodesic.mathdoc.fr/item/MM_2008_20_8_a8/
[1] R. Anderson, R. Mei, Infektsionnye bolezni cheloveka. Dinamika i kontrol, Mir, “Nauchnyi mir”, M., 2004, 784 pp. (Per. s angl.)
[2] A. S. Karkach, T. E. Sannikova, A. A. Romanyukha, “Matematicheskoe modelirovanie adaptatsii immunnoi sistemy. Energeticheskaya tsena i prisposoblennost”, Vychislitelnaya matematika i matematicheskoe modelirovanie, Trudy mezhdunarodnoi konferentsii. T. 2, IVM RAN, M., 2000, 307 pp.
[3] A. A. Romanyukha, S. G. Rudnev i dr., “Ot immunologii k demografii: modelirovanie immunnoi istorii zhizni”, Gerontologiya in silico: stanovlenie novoi distsipliny: Matematicheskie modeli, analiz dannykh i vychislitelnye eksperimenty, BINOM. Laboratoriya znanii, M., 2007, 535 pp.
[4] C. Lienhardt, “From exposure to disease: the role of environmental factors in susceptibility to and development of tuberculosis”, Epidemiol. Reviews, 23:2 (2001), 288–301
[5] E. Vynnycky, P. E. M. Fine, “The natural history of tuberculosis: the implications of age-dependent risks of disease the role of reinfection”, Epidemiol. Infect., 119 (2000), 183–201 | DOI
[6] Global tuberculosis control – surveillance, planning, financing, WHO Report, 2007; http://www.who.int/tb/publications/2007/en/index.html
[7] M. I. Perelman, V. A. Koryakin, Ftiziatriya, Meditsina, M., 1996, 336 pp.
[8] Analiticheskii obzor po tuberkulezu v RF za 2004 g: kharakteristiki epidemicheskogo protsessa i protivotuberkuleznoi sluzhby – Minzdravsotsrazvitiya Rossii, 2006, 55 pp.
[9] H. T. Waaler, A. Geser, S. Andersen, “The use of mathematical models in the study of the epidemiology of tuberculosis”, Am. J. Publ. Health, 52 (1962), 1002–1013 | DOI
[10] S. Brogger, “Systems analysis in tuberculosis control: A model”, American Review of Respiratory Disease, 95 (1967), 419–434
[11] S. H. Ferebee, “An epidemiological model of tuberculosis in the United States”, Bulletin of the National Tuberculosis Association, 1967, no. 1, 4–7, January
[12] K. K. Avilov, A. A. Romanyukha, “Matematicheskie modeli rasprostraneniya i kontrolya tuberkuleza (obzor)”, Matematicheskaya biologiya i bioinformatika, 2:2 (2007), 188–318
[13] P. Mangtani, D. J. Jolley et al., “Socioeconomic deprivation and notification rates for tuberculosis in London during 1982–91”, British Medical Journal, 310 (1995), 963–966
[14] R. G. Barr, A. V. Diez-Roux et al., “Neighborhood poverty and the resurgence of tuberculosis in New York City, 1984–1992”, Am. J. Publ. Health, 91 (2001), 1487–1493 | DOI
[15] W. V. Souza, M. S. Carvalho et al., “Tuberculosis in intra-urban settings: a Bayesian approach”, Tropical Medicine and International Health, 12:3 (2007), 323–330 | MR
[16] K. K. Avilov, A. A. Romanyukha, “Matematicheskoe modelirovanie protsessov rasprostraneniya tuberkuleza i vyyavleniya bolnykh”, Avtomatika i telemekhanika, 2007, no. 9, 145–160 | MR | Zbl
[17] Regiony Rossii 2004: osnovnye kharakteristiki sub'ektov RF. Statisticheskii sbornik, Statistika Rossii, M., 2004, 671 pp.
[18] Baza dannykh NII Ftiziopulmonologii MMA im. I. M. Sechenova
[19] G. I. Marchuk, Sopryazhennye uravneniya. Kurs lektsii, IVM RAN, M., 2001, 241 pp.