A model of tuberculosis epidemiology. Data analysis and estimation of parameters
Matematičeskoe modelirovanie, Tome 20 (2008) no. 8, pp. 107-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we constructed mathematical model that describes main points of tuberculosis transmission in Russia. We formulated the problem of model adjustment for a number of regions of Russia. We developed a method of estimation of model parameters and basic epidemiological characteristics that takes account of socio-economic heterogeneity and heterogeneity of medical service quality. We demonstrated that heterogeneity of prevalence of disease and infection can be governed by both the difference in medical service quality and the difference in socio-economic conditions. We simulated the dynamics of prevalence of disease and infection under changing socio-economic conditions. We concluded that improvement of socio-economic conditions has positive influence on epidemiological situation, decreasing prevalence of disease and infection substantially.
@article{MM_2008_20_8_a8,
     author = {O. A. Melnichenko and A. A. Romanyukha},
     title = {A model of tuberculosis epidemiology. {Data} analysis and estimation of parameters},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--128},
     publisher = {mathdoc},
     volume = {20},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_8_a8/}
}
TY  - JOUR
AU  - O. A. Melnichenko
AU  - A. A. Romanyukha
TI  - A model of tuberculosis epidemiology. Data analysis and estimation of parameters
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 107
EP  - 128
VL  - 20
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_8_a8/
LA  - ru
ID  - MM_2008_20_8_a8
ER  - 
%0 Journal Article
%A O. A. Melnichenko
%A A. A. Romanyukha
%T A model of tuberculosis epidemiology. Data analysis and estimation of parameters
%J Matematičeskoe modelirovanie
%D 2008
%P 107-128
%V 20
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_8_a8/
%G ru
%F MM_2008_20_8_a8
O. A. Melnichenko; A. A. Romanyukha. A model of tuberculosis epidemiology. Data analysis and estimation of parameters. Matematičeskoe modelirovanie, Tome 20 (2008) no. 8, pp. 107-128. http://geodesic.mathdoc.fr/item/MM_2008_20_8_a8/

[1] R. Anderson, R. Mei, Infektsionnye bolezni cheloveka. Dinamika i kontrol, Mir, “Nauchnyi mir”, M., 2004, 784 pp. (Per. s angl.)

[2] A. S. Karkach, T. E. Sannikova, A. A. Romanyukha, “Matematicheskoe modelirovanie adaptatsii immunnoi sistemy. Energeticheskaya tsena i prisposoblennost”, Vychislitelnaya matematika i matematicheskoe modelirovanie, Trudy mezhdunarodnoi konferentsii. T. 2, IVM RAN, M., 2000, 307 pp.

[3] A. A. Romanyukha, S. G. Rudnev i dr., “Ot immunologii k demografii: modelirovanie immunnoi istorii zhizni”, Gerontologiya in silico: stanovlenie novoi distsipliny: Matematicheskie modeli, analiz dannykh i vychislitelnye eksperimenty, BINOM. Laboratoriya znanii, M., 2007, 535 pp.

[4] C. Lienhardt, “From exposure to disease: the role of environmental factors in susceptibility to and development of tuberculosis”, Epidemiol. Reviews, 23:2 (2001), 288–301

[5] E. Vynnycky, P. E. M. Fine, “The natural history of tuberculosis: the implications of age-dependent risks of disease the role of reinfection”, Epidemiol. Infect., 119 (2000), 183–201 | DOI

[6] Global tuberculosis control – surveillance, planning, financing, WHO Report, 2007; http://www.who.int/tb/publications/2007/en/index.html

[7] M. I. Perelman, V. A. Koryakin, Ftiziatriya, Meditsina, M., 1996, 336 pp.

[8] Analiticheskii obzor po tuberkulezu v RF za 2004 g: kharakteristiki epidemicheskogo protsessa i protivotuberkuleznoi sluzhby – Minzdravsotsrazvitiya Rossii, 2006, 55 pp.

[9] H. T. Waaler, A. Geser, S. Andersen, “The use of mathematical models in the study of the epidemiology of tuberculosis”, Am. J. Publ. Health, 52 (1962), 1002–1013 | DOI

[10] S. Brogger, “Systems analysis in tuberculosis control: A model”, American Review of Respiratory Disease, 95 (1967), 419–434

[11] S. H. Ferebee, “An epidemiological model of tuberculosis in the United States”, Bulletin of the National Tuberculosis Association, 1967, no. 1, 4–7, January

[12] K. K. Avilov, A. A. Romanyukha, “Matematicheskie modeli rasprostraneniya i kontrolya tuberkuleza (obzor)”, Matematicheskaya biologiya i bioinformatika, 2:2 (2007), 188–318

[13] P. Mangtani, D. J. Jolley et al., “Socioeconomic deprivation and notification rates for tuberculosis in London during 1982–91”, British Medical Journal, 310 (1995), 963–966

[14] R. G. Barr, A. V. Diez-Roux et al., “Neighborhood poverty and the resurgence of tuberculosis in New York City, 1984–1992”, Am. J. Publ. Health, 91 (2001), 1487–1493 | DOI

[15] W. V. Souza, M. S. Carvalho et al., “Tuberculosis in intra-urban settings: a Bayesian approach”, Tropical Medicine and International Health, 12:3 (2007), 323–330 | MR

[16] K. K. Avilov, A. A. Romanyukha, “Matematicheskoe modelirovanie protsessov rasprostraneniya tuberkuleza i vyyavleniya bolnykh”, Avtomatika i telemekhanika, 2007, no. 9, 145–160 | MR | Zbl

[17] Regiony Rossii 2004: osnovnye kharakteristiki sub'ektov RF. Statisticheskii sbornik, Statistika Rossii, M., 2004, 671 pp.

[18] Baza dannykh NII Ftiziopulmonologii MMA im. I. M. Sechenova

[19] G. I. Marchuk, Sopryazhennye uravneniya. Kurs lektsii, IVM RAN, M., 2001, 241 pp.