Modeling of free-stream turbulent intensity effect on transitional wall boundary layer flows
Matematičeskoe modelirovanie, Tome 20 (2008) no. 8, pp. 87-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under the closure of the averaged boundary layer equations the main attention has been concentrated on the development of turbulence models and numerical methods, the analysis of effect of the free-stream leading and the outer edge turbulence parameters on the transitional characteristics of the flow and turbulence at near a wall. For research of the dynamic and thermal characteristics of the wall boundary layers the different variants of classical and modified one- and two-parametric turbulence models allowing by continuous manner to computer a full stream region with laminar, transitional and turbulent flow regimes at high free stream turbulence intensity have been analysed. The two common research ways for the better description of existing experimental and theoretical research data for the transitional structure of a boundary layer at a variation from low to high local turbulent Reynolds numbers have been proposed. An effect of the scale of free stream turbulence on the averaged dynamic and turbulence characteristics of a transition have been studies numerically in details. The predicted results on the basis of $k$-$l$ and a number of $k$-$\varepsilon$ models under flow of a flat plate at high turbulence intensity have been compared with the test experimental data on velocity and turbulence intensity profiles.
@article{MM_2008_20_8_a7,
     author = {V. A. Aleksin and V. M. Zubarev},
     title = {Modeling of free-stream turbulent intensity effect on transitional wall boundary layer flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {87--106},
     publisher = {mathdoc},
     volume = {20},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_8_a7/}
}
TY  - JOUR
AU  - V. A. Aleksin
AU  - V. M. Zubarev
TI  - Modeling of free-stream turbulent intensity effect on transitional wall boundary layer flows
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 87
EP  - 106
VL  - 20
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_8_a7/
LA  - ru
ID  - MM_2008_20_8_a7
ER  - 
%0 Journal Article
%A V. A. Aleksin
%A V. M. Zubarev
%T Modeling of free-stream turbulent intensity effect on transitional wall boundary layer flows
%J Matematičeskoe modelirovanie
%D 2008
%P 87-106
%V 20
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_8_a7/
%G ru
%F MM_2008_20_8_a7
V. A. Aleksin; V. M. Zubarev. Modeling of free-stream turbulent intensity effect on transitional wall boundary layer flows. Matematičeskoe modelirovanie, Tome 20 (2008) no. 8, pp. 87-106. http://geodesic.mathdoc.fr/item/MM_2008_20_8_a7/

[1] Draiden Kh. L., “Perekhod laminarnogo techeniya v turbulentnoe”, Turbulentnye techeniya i teploperedacha. Aerodin. bolsh. skorostei i reaktiv. tekh-ka, Izd. inostr. lit., M., 1963, 9–82

[2] Glushko G. S., “Perekhod k turbulentnomu rezhimu techeniya v pogranichnom sloe ploskoi plastiny pri razlichnykh masshtabakh turbulentnosti nabegayuschego potoka”, Izv. AN SSSR, MZhG, 1972, no. 3, 68–70

[3] Lushik V. G., Pavelev A. A., Yakubenko A. E., “Issledovanie perekhoda u turbulentnosti v pogranichnom sloe pri bolshoi intensivnosti vneshnikh vozmuschenii s pomoschyu trekhparametricheskoi modeli”, Problemy sovr. mekhaniki, ch. 1, MGU, M., 1983, 127–138

[4] Epik E. Ya., “Heat transfer effects in transitions”, Engin. Found. Conf. (March 10–15, 1996), New York–San Diego, California, 1996, 1–47

[5] Aleksin V. A., Modelling of free stream turbulence parameter effect on flow and heat transfer in boundary layer, Preprint no 600, Institute for Problems in Mechanics RAS, Moscow, 1997, 29 pp.

[6] Zubarev V.M., Comparative analysis of various $k-\varepsilon$ turbulence models for laminar-turbulent transition, Preprint no 601, Institute for Problems in Mechanics RAS, Moscow, 1997, 52 pp.

[7] Ginevskii A. S., Ioselevich V. A., Kolesnikov A. V. i dr., “Metody rascheta turbulentnogo pogranichnogo sloya”, Itogi nauki i tekhniki. Ser. Mekhanika zhidkosti i gaza, 11, VINITI, M., 1978, 155–304

[8] Kolmogorov A. N., “Uravneniya turbulentnogo dvizheniya neszhimaemoi zhidkosti”, Izv. AN SSSR, Fizika, 6:1–2 (1942), 6–58

[9] Sovershennyi V. D., Aleksin V. A., “O raschete pogranichnogo sloya na profilyakh pri nalichii zon laminarnogo i turbulentnogo rezhimov techeniya”, Izv. vuzov. Aviats. tekhn., 1983, no. 2, 68–72

[10] Prandtl L., “Über ein neues Formelsystem für die ausgebildete Turbulenz”, Nachrichten Akademie der Wissenschaften. Göttingen. Math.-Phys. Klasse, 1 (1945), 6–19 | MR

[11] Jones W. P., Launder B. E., “The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence”, Int. J. Heat and Mass Transfer, 16:6 (1973), 1119–1130 | DOI

[12] Chzhen K. Yu., “Raschet techenii v kanalakh i pogranichnykh sloyakh na osnove modeli turbulentnosti, primenimoi pri nizkikh chislakh Reinoldsa”, Raketnaya tekhnika i kosmonavtika, 20:2 (1982), 30–37

[13] Peitel V. K., Rodi V., Shoierer G., “Modeli turbulentnosti dlya techenii v pristenochnoi oblasti s malymi chislami Reinoldsa. Obzor”, Aerokosmich. tekhnika, 1986, no. 2, 183–197

[14] Khintse I. O., Turbulentnost, ee mekhanizm i teoriya, Fizmatgiz, M., 1963, 680 pp.

[15] Lem, Bremkhorst, “Modifitsirovannaya forma $(k-\varepsilon)$-modeli dlya rascheta pristenochnoi turbulentnosti”, Teoreticheskie osnovy inzhenernykh raschetov, 1981, no. 3, 156–160

[16] Myong H. K., Kasagi N., “A new proposal for a $k-\varepsilon$ turbulence model and its evaluation”, 1st report, development of the model, Trans. Japan Soc. Mech. Eng. B, 54:507 (1988), 3003–3009

[17] Myong H. K., Kasagi N., “A new proposal for a $k-\varepsilon$ turbulence model and its evaluation”, 2nd report, evaluation of the model, Trans. Japan Soc. Mech. Eng. B, 54:508 (1988), 3512–3520

[18] Nagano Y., Tagawa M., Niimi M., “An improvement of the $k-\varepsilon$ turbulence model”, Trans. Japan Soc. Mech. Eng. B, 55:512 (1989), 1008–1015

[19] Hassid S., Poreh M., “A turbulent energy model for flows with grad reduction”, Trans. ASME. J. Fluids Eng., 100:1 (1978), 107–112

[20] Van, Zhen, Khartel, “Raschet teplootdachi na poverkhnosti profilya s pomoschyu dvukhparametricheskoi modeli turbulentnosti dlya nizkikh chisel Reinoldsa”, Trudy am. ob-va inzh.-mekh. Energet. mashiny i ustanovki, 1985, no. 1, 45–53

[21] Cousteix J., Quemard C., Michel R., “Application d'un schéma amélioré de longueur de mélage à l'étude des couches limites turbulentes tridimensionnelles”, Turbulent Shear Flows, AGARD, 18, CP no 93, 1971

[22] Abu-Ghannam B. J., Shaw R., “Natural transition of boundary layers – the effects of turbulence, pressure gradient, and flow history”, J. Mech. Eng. Sci., 22 (1980), 213–228 | DOI

[23] Dyban E. P., Epik E. Ya., Teplomassoobmen i gidrodinamika turbulizirovannykh potokov, Nauk. Dumka, Kiev, 1985, 296 pp.

[24] Aleksin V. A., Zubarev V. M., Modelling of free stream turbulence effect on boundary layer flow, Preprint no 628, Institute for Problems in Mechanics RAS, Moscow, 1999, 44 pp.

[25] A. M. Savill (ed.), Transition Modelling for Turbomachinery II: An Updated Summ. of ERCOFTAC Trans. SIG Progr., 2nd WORKSHOP, Cambridge Univ. Press, 1994, 226 pp.