Modelling of the emission spectra of tungsten plasma
Matematičeskoe modelirovanie, Tome 20 (2008) no. 7, pp. 93-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

NonLTE kinetics model for radiating plasma of multicharged ions is developed. The model takes into account the coupling between level occupancies and radiation transport. It allows to carry out the calculations for plasma configurations at arbitrary optical thickness. The calculations of tungsten emission spectra were made in a wide range of temperature and density ($30$ eV, $0.01\rho0.03$ g/cm$^3$). The codes THERMOS  BELINE were used for computation of nonLTE spectra of plane and cylindrical tungsten layers. At most important cases the calculations were verified as for line positions and also for more realistic geometry. The calculated spectra may be useful in the investigation of powerful wire array liners.
@article{MM_2008_20_7_a8,
     author = {I. V. Vichev and V. G. Novikov and A. D. Solomyannaya},
     title = {Modelling of the emission spectra of tungsten plasma},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {93--106},
     publisher = {mathdoc},
     volume = {20},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_7_a8/}
}
TY  - JOUR
AU  - I. V. Vichev
AU  - V. G. Novikov
AU  - A. D. Solomyannaya
TI  - Modelling of the emission spectra of tungsten plasma
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 93
EP  - 106
VL  - 20
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_7_a8/
LA  - ru
ID  - MM_2008_20_7_a8
ER  - 
%0 Journal Article
%A I. V. Vichev
%A V. G. Novikov
%A A. D. Solomyannaya
%T Modelling of the emission spectra of tungsten plasma
%J Matematičeskoe modelirovanie
%D 2008
%P 93-106
%V 20
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_7_a8/
%G ru
%F MM_2008_20_7_a8
I. V. Vichev; V. G. Novikov; A. D. Solomyannaya. Modelling of the emission spectra of tungsten plasma. Matematičeskoe modelirovanie, Tome 20 (2008) no. 7, pp. 93-106. http://geodesic.mathdoc.fr/item/MM_2008_20_7_a8/

[1] Zakharov S. V., Smirnov V. P., Grabovskii E. V., Nedossev S. L., Oleinik G. M., Zaitsev V. I., “Imploding liner as a driver for indirect driven target physics studies”, Proc. of the IAEA Technical Commitee Meeting on Drivers for Inertial Confinement Fusion (Paris, 1994), IAEA, Vienna, 1995, 395

[2] Sanford T. W. L. et al., “Characteristics and Dynamics of a 215-eV Dynamic-Hohlraum $X$-Ray Source on $Z$”, Proceedings of 14th Int. Conf. Beams-2002 and 5th Int. Conf. DZP2002, Albuquerque, 2002

[3] Bailey J. E., Slutz S. A., Chandler G. A. et al., “Spectroscopy of argon-doped capsule implosions driven by $z$-pinch dynamic hohlraum”, Proceedings 14th Int. Conf. Beams2002 and 5th Int. Conf. DZP2002, Albuquerque, 2002

[4] Idzorek G. C., Chrien R. E., Peterson D. L., Watt R. G., Chandler G. A., Fehl D. L., Sanford T. W. L., “Spectral output of $Z$-machine implosions”, 28th ICOPS 2001 and 13th IEEE Int. Pulsed Power Conf., Las Vegas, 2001, 777

[5] Aleksandrov V. V., Grabovskii E. V., Zukakishvili G. G. i dr., “Tokovoe samoszhatie mnogoprovolochnoi sborki kak radialnyi plazmennyi liven”, ZhETF, 124:10 (2003), 829–839

[6] Novikov V. G., Zakharov S. V., “Modeling of nonequilibrium radiating tungsten liners”, Journal of Quantitative Spectroscopy and Radiative Transfer, 81 (2003), 339–354 | DOI

[7] Benattar R., Zakharov S. V., Nikiforov A. F., Novikov V. G. et al., “Influence of magnetohydrodynamic Rayleigh–Taylor instability on radiation of imploded heavy ion plasmas”, Phys. Plasmas, 6:1 (1999), 175–187 | DOI | MR

[8] Vainshtein L. A., Sobelman I. I., Yukov E. A., Vozbuzhdenie atomov i ushirenie spektralnykh linii, Nauka, M., 1979

[9] Rozsnyai B. F., “Collisional-radiative average-atom model for hot plasmas”, Phys. Rev. B, 55:6 (1997), 7507–7521

[10] Nikiforov A. F., Novikov V. G., Uvarov V. B., Kvantovo-statisticheskie modeli vysokotemperaturnoi plazmy i metody rascheta rosselandovykh probegov i uravnenii sostoyaniya, Fiziko-matematicheskaya literatura, M., 2000

[11] Gu M. F., Flexible Atomic Code, http://kipac-tree.stanford.edu/fac/

[12] Final Report of the Third International Opacity Workshop Code Comparison Study, Max-Planck Institut fur Quantenoptik, Garshing, 1995

[13] Final Report of the Fourth International Opacity Workshop Code Comparison Study, Institute of Nuclear Fusion, Madrid, 1998

[14] Rickert A., “Review of the third intrnational opacity workshop and code comparison study”, J. Quant. Spectrosc. Radiat. Transf., 54:1–2 (1995), 325–332 | DOI

[15] Winhart G., Eidmann K., Iglesias C. A. et al., “XUV opacity measurements and comparison with models”, J. Quant. Spectrosc. Radiat. Transf., 54:1–2 (1995), 437–446 | DOI

[16] Orlov N. Yu., Denisov O. B., “Teoreticheskii vyvod sistemy uravnenii ionnoi modeli veschestva v relyativistskom priblizhenii”, Matem. modelirovanie, 8:2 (1996), 48–56 | MR | Zbl

[17] Nikiforov A. F, Novikov V. G., Uvarov V. B., Quantum-Statistical Models of Hot Dense Matter (Methods for Computation Opacity and Equation of State), Birkhauser-Verlag, 2005 | MR | Zbl

[18] Sobelman I. I., Vvedenie v teoriyu atomnykh spektrov, Nauka, M., 1977

[19] Novikov V. G., Solomyannaya A. D., Cpektralnye kharakteristiki plazmy, soglasovannye s izlucheniem, prepr. No 85, IPM im. Keldysha, M., 1995, 18 pp. | MR

[20] Aleksandrov V. V., Grabovskii E. V., Zurin M. V., Mitrofanov K. N., Nedoseev S. L., Oleinik G. M., Porofeev I. Yu., Samokhin A. A., Sasorov P. V., Smirnov V. P., Fedulov M. V., Frolov I. N., “Plazmennyi liven iz mnogoprovolochnoi sborki”, ZhETF (to appear)

[21] Novikov V. G., Solomyannaya A. D., Vichev I. Yu., Modelirovanie spektrov izlucheniya plazmy volframa, prepr. No 54, IPM im. Keldysha, M., 2006, 26 pp.

[22] Braginskii S. I., “Yavleniya perenosa v plazme”, Voprosy teorii plazmy, vyp. 1, ed. Leontovich M. A., Gosatomizdat, M., 1963, 183–272

[23] Huba J. D., NRL plasma formulary, Naval Research Laboratory Washington, DC 20375, 2002