Splitting method for strong stable mixtures of normal laws in stable index $\alpha=1$ and $\alpha=2$
Matematičeskoe modelirovanie, Tome 20 (2008) no. 7, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Splitting method for strong stable scale mixtures of normal laws is investigated, the mixtures being limit distributions of compound Cox processes. For stable index $\alpha=1$ the precise formula of invariant density distribution relevant to scale transformation was derived. Using classical and asymptotic methods the sample size necessary to determine the difference between normal mixture and the alternative $\alpha=1$ was computed.
@article{MM_2008_20_7_a0,
     author = {E. L. Borodulina and E. L. Krotova},
     title = {Splitting method for strong stable mixtures of normal laws in stable index $\alpha=1$ and $\alpha=2$},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {20},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_7_a0/}
}
TY  - JOUR
AU  - E. L. Borodulina
AU  - E. L. Krotova
TI  - Splitting method for strong stable mixtures of normal laws in stable index $\alpha=1$ and $\alpha=2$
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 3
EP  - 12
VL  - 20
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_7_a0/
LA  - ru
ID  - MM_2008_20_7_a0
ER  - 
%0 Journal Article
%A E. L. Borodulina
%A E. L. Krotova
%T Splitting method for strong stable mixtures of normal laws in stable index $\alpha=1$ and $\alpha=2$
%J Matematičeskoe modelirovanie
%D 2008
%P 3-12
%V 20
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_7_a0/
%G ru
%F MM_2008_20_7_a0
E. L. Borodulina; E. L. Krotova. Splitting method for strong stable mixtures of normal laws in stable index $\alpha=1$ and $\alpha=2$. Matematičeskoe modelirovanie, Tome 20 (2008) no. 7, pp. 3-12. http://geodesic.mathdoc.fr/item/MM_2008_20_7_a0/

[1] Korolev V. Yu., “Ob asimptoticheskoi ustoichivosti raspredelenii obobschennykh neordinarnykh protsessov Koksa”, TVP, 42:3 (1997), 359–361 | MR

[2] Bening V. E., Korolev V. Yu., “Asimptoticheskie razlozheniya kvantilei obobschennykh protsessov Koksa i nekotorye ikh prilozheniya k zadacham finansovoi i aktuarnoi matematiki”, Obozrenie prikladnoi i promyshlennoi matematiki, 5:1 (1998), 23–43 | Zbl

[3] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp. | MR

[4] Korolev V. Yu., “O raspredeleniyakh, simmetrizatsiya kotorykh yavlyaetsya masshtabnoi smesyu normalnykh zakonov”, Statisticheskie metody otsenivaniya i proverki gipotez, mezhvuz. sb. nauch. tr., Izd-vo Perm. un-ta, Perm, 2000, 136–143

[5] Sapozhnikov P. N., “Proverka gipotez o tipe predelnogo raspredeleniya obobschennykh protsessov Koksa”, Obozrenie prikladnoi i promyshlennoi matematiki, 8:1 (2001), 314–315

[6] Mandelbrot B., “The variation of certain speculative prices”, J. Business, 36 (1963), 393–413

[7] Fama E., “The behavior of stock market price”, J. Business, 38 (1965), 34–105 | DOI

[8] Sapozhnikov P. N., Pseudomixers for strong stable mixers of standard normal law, Seminar on Stability problems for stochastic models, 2003 | Zbl

[9] Krotova E. L., Sapozhnikov P. N., “Kriterii soglasiya predelnogo raspredeleniya s normalnym protiv ustoichivoi smesi normalnykh”, Obozrenie prikladnoi i promyshlennoi matematiki, 9:1 (2002), 133–134 | MR

[10] Shiryaev A. N., “Veroyatnostno-statisticheskie modeli evolyutsii finansovykh indeksov”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:4 (1995), 527–555 | MR

[11] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. T. 1: Elementarnye funktsii, Fizmatlit, M., 2003, 632 pp. | MR

[12] Nikitin Ya. Yu., Asimptoticheskaya effektivnost neparametricheskikh kriteriev, Fizmatlit, M., 1995, 240 pp. | MR | Zbl

[13] Tarasenko F. P., Neparametricheskaya statistika, TGU, Tomsk, 1976, 293 pp.

[14] Fama E. F., Roll R., “Parameter Estimates for Symmetric Stable Distribution”, Journal of the American Statistical Association, 66:334 (1971), 331–338 | DOI | Zbl