Mathematical models of transition phenomena in the inverse gases
Matematičeskoe modelirovanie, Tome 20 (2008) no. 5, pp. 110-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical models of transition phenomena in the inverse real gas and polycomponential ionized gas containing inverse components are constructed. It is shown that the coefficients of viscosity, coefficients of conductivity and electrothermic coefficients are negative in such media. The theory approbation by comparison with experimental data for semiconductor lasers is made.
@article{MM_2008_20_5_a6,
     author = {R. A. Brazwe and A. A. Elizarova},
     title = {Mathematical models of transition phenomena in the inverse gases},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {110--118},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_5_a6/}
}
TY  - JOUR
AU  - R. A. Brazwe
AU  - A. A. Elizarova
TI  - Mathematical models of transition phenomena in the inverse gases
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 110
EP  - 118
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_5_a6/
LA  - ru
ID  - MM_2008_20_5_a6
ER  - 
%0 Journal Article
%A R. A. Brazwe
%A A. A. Elizarova
%T Mathematical models of transition phenomena in the inverse gases
%J Matematičeskoe modelirovanie
%D 2008
%P 110-118
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_5_a6/
%G ru
%F MM_2008_20_5_a6
R. A. Brazwe; A. A. Elizarova. Mathematical models of transition phenomena in the inverse gases. Matematičeskoe modelirovanie, Tome 20 (2008) no. 5, pp. 110-118. http://geodesic.mathdoc.fr/item/MM_2008_20_5_a6/

[1] D. Enskog, “Kinetische Theorie der Waerme Leitung, Reibung und Selbstdiffusion in gewissen werdichteten Gasen und Flusigkeiten”, Kungl. Svenska Vetenskapsakad Handlingar, 63:4 (1922), 44 | Zbl

[2] Dzh. Fertsiger, G. Kaper, Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976

[3] J. V. Sengers, “Thermal conductivity and viscosity of simple fluids”, Int. J. Heat Mass Transfer, 8 (1965), 1103 | DOI

[4] J. V. Sengers, “Density expansion of the viscosity of a moderately dense qas”, Phys. Rev. Lett., 15 (1965), 515 | DOI | MR

[5] H. G. M. Henlay, R. D. McCarthy, E. G. D. Cohen, “Analysis of the transport coefficients for simple dense fluids: application of the modified Enskog theory”, Physica, 60 (1972), 322 | DOI

[6] V. T. Makaryan, N. E. Molevich, “Novye statsionarnye struktury v akusticheski aktivnoi srede”, Pisma v ZhETF, 29:18 (2003), 11–15

[7] V. I. Ryzhii, “Absolyutnaya otritsatelnaya provodimost, indutsirovannaya mikrovolnovym izlucheniem i sostoyaniya s nulevym soprotivleniem v dvumernykh elektronnykh sistemakh: istoriya i sovremennoe sostoyanie”, UFN, 175:2 (2005), 205–213 | DOI

[8] R. A. Brazhe, “Inversnye sistemy i sovremennye dostizheniya v oblasti mikroelektroniki”, Matematicheskie metody i modeli v prikladnykh zadachakh nauki i tekhniki, Tr. Mezhd. Konf. “Kontinualnye algebraicheskie logiki, ischisleniya i neiroinformatika v nauke i tekhnike,” t. 4, Ulyanovsk, 2006, 46–48

[9] R. A. Brazhe, “Osobennosti yavlenii perenosa v inversnykh sredakh”, Matematicheskie metody i modeli v prikladnykh zadachakh nauki i tekhniki, Tr. Mezhd. Konf. “Kontinualnye algebraicheskie logiki, ischisleniya i neiroinformatika v nauke i tekhnike,” t. 4, Ulyanovsk, 2006, 49–51

[10] R. A. Brazhe, “Obobschennaya matematicheskaya model inversnoi sredy i ee prakticheskie prilozheniya”, Prikladnaya matematika i mekhanika, Sb. nauch. tr., 7, Ulyanovsk, 2006, 61–70

[11] D. V. Sivukhin, Obschii kurs fiziki. T. 2. Termodinamika i molekulyarnaya fizika, Nauka, M., 1975

[12] S. Chepmen, T. Kauling, Matematicheskaya teoriya neodnorodnykh gazov, IL, M., 1960 | MR

[13] D. O'Shia, R. Kolen, U. Rods, Lazernaya tekhnika, Atomizdat, M., 1980