Digital mathematical modeling of fractal non-linear parametric dynamics of surface sea waves
Matematičeskoe modelirovanie, Tome 20 (2008) no. 5, pp. 93-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

The digital fractal dynamic mathematical model of derivation and development of turbulence of surface sea waves as open irreversible dissipative self-oscillating non-linear parametric multicoupling system with delaying feedback is developed. Fractal dynamics of a system — modes of own self-oscillations — three-zonal independent self-oscillating, and cooperative self-oscillating fractal systems with external disturbances in the form of spectra of flows and wind effects (spectra Van der Hoven), and also parametric and non-linear effects and dissipative gears is investigated.
@article{MM_2008_20_5_a5,
     author = {L. S. Vilenchik and Y. V. Ivanov and V. P. Trofimov},
     title = {Digital mathematical modeling of fractal non-linear parametric dynamics of surface sea waves},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {93--109},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_5_a5/}
}
TY  - JOUR
AU  - L. S. Vilenchik
AU  - Y. V. Ivanov
AU  - V. P. Trofimov
TI  - Digital mathematical modeling of fractal non-linear parametric dynamics of surface sea waves
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 93
EP  - 109
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_5_a5/
LA  - ru
ID  - MM_2008_20_5_a5
ER  - 
%0 Journal Article
%A L. S. Vilenchik
%A Y. V. Ivanov
%A V. P. Trofimov
%T Digital mathematical modeling of fractal non-linear parametric dynamics of surface sea waves
%J Matematičeskoe modelirovanie
%D 2008
%P 93-109
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_5_a5/
%G ru
%F MM_2008_20_5_a5
L. S. Vilenchik; Y. V. Ivanov; V. P. Trofimov. Digital mathematical modeling of fractal non-linear parametric dynamics of surface sea waves. Matematičeskoe modelirovanie, Tome 20 (2008) no. 5, pp. 93-109. http://geodesic.mathdoc.fr/item/MM_2008_20_5_a5/

[1] Weber E., Weber W., Wellenlehre auf Experimente gegrudet, oder uber die Wellen tropf barer Flussigkeiten mit Anwendung auf die Schall-und Lichtwellen, Leipzig, 1925

[2] Kelwin W., “On stationary waves in flowing water”, Phil. Mag. (4), 42 (1871), 362

[3] Jeffreys H., “On the Formatin the waves on water by wind”, Proc. Roy. Soc. A, 107 (1925), 189 | DOI | Zbl

[4] Shuleikin V. V., Fizika morya, Nauka, M., 1968, 1083 pp.

[5] Kapitsa P. L., “K voprosu ob obrazovanii vetrom morskikh voln”, DAN SSSR, 64:4 (1949), 12–18

[6] Kononkova G. E., “Zarozhdenie vetrovykh voln na poverkhnosti vody”, Trudy MGI AN SSSR, 3, 1953, 3–29

[7] Fillips O. M., Dinamika verkhnego sloya okeana, Gidrometeoizdat, L., 1980, 319 pp.

[8] Okeanologiya. Fizika okeana, t. 1, 2, Nauka, M., 1978, 455 pp.

[9] Prigozhin I. R., Stengers I., Poryadok iz khaosa, URSS, M., 2003, 310 pp.

[10] Ruelle D., Takens F., “On the nature of turbulence”, Comm. Math. Phys., 20 (1971), 167–192 | DOI | MR | Zbl

[11] Mandelshtam L. I., Lektsii po kolebaniyam, Izd-vo AN SSSR, M., 1955

[12] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, GITTL, M.-L., 1950

[13] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Nauka, M., 1981, 184 pp. | MR | Zbl

[14] Solodov A. A., Solodova E. A., Sistemy s peremennym zapazdyvaniem, Nauka, M., 1980, 387 pp. | MR

[15] Dmitriev A. S., Kislov V. Ya., Stokhasticheskie kolebaniya v radiofizike i elektronike, Nauka, M., 1989, 280 pp. | MR | Zbl

[16] Vilenchik L. S., Ivanov Yu. V., Trofimov V. P., “Parametricheskaya dinamika protsessornogo generatora khaosa”, Khaos i struktury v nelineinykh sistemakh. Teoriya i eksperiment, 5-ya mezhdunarodnaya nauchnaya konferentsiya, posvyaschennaya 10-letiyu Evraziiskogo natsionalnogo universiteta im. L. N. Gumileva. Tezisy dokladov. Ch. 2 (15–17 iyunya 2006 g. Astana), 229–234

[17] Kononkova G. E., Pokazeev K. V., Dinamika morskikh voln, Izd-vo MGU, M., 1985, 298 pp.

[18] Rabiner L., Gould B., Teoriya i primenenie tsifrovoi obrabotki signalov, Mir, M., 1978, 848 pp.

[19] Pierson W. J. Jr., Moskovitz L., “A proposed spectral from for fully-developed wind seas based similarity theory of S. A. Kitaigorodsky”, J. Geophys. Res., 69:24 (1964), 5181–5190 | DOI

[20] Van der Hoven J., “Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour”, J. Meteor., 14:2 (1957), 160–164

[21] Landau L. D., Lifshits E. M., Gidrodinamika, T. VI, Nauka, M., 1988, 437 pp. | MR

[22] Chua L. O., Komuro M., Matsumoto T., “The double scroll family”, IEEE Trans., 33 (1986), 1072–1118 | MR | Zbl

[23] Keller J. M., Chen S., Crownover R. M., “Texture description and segmentation through fractal geometry”, Comput. Vision, Graph, Image Process, 45:2 (1989), 156–166 | DOI

[24] Potapov A. A., Fraktaly v radiofizike i radiolokatsii: topologiya vyborki, Universitetskaya kniga, M., 2005, 847 pp. | Zbl