Hydrodynamical processes in medical devices for blood-oxygen saturation
Matematičeskoe modelirovanie, Tome 20 (2008) no. 3, pp. 9-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Tests of the commercial oxygenators show different kinds of defects. Between them are thrombosis, hemolysis and constipation of membrane channels with plasma leukocytes, shunting of а venous blood stream between membrane capillars or at the wall of device. To prevent the above mentioned unwanted effects it is necessary to consider and optimize all the physical and chemical processes in the device at the design stage. These include hydrodynamical, mass-transfer and chemical (hemoglobin-oxygen saturation) processes. The article considers the method of a hydrodynamical mathematical modelling for the blood flow in a membrane oxygenator. Also the verification of numerical data is performed. For the verification process a hydrodynamical test bench with domestic design was used. The test data and those of comparative analysis show fair results that allow to use the model for further analysis of different aspects of the device functioning.
@article{MM_2008_20_3_a1,
     author = {D. O. Yasukevich},
     title = {Hydrodynamical processes in medical devices for blood-oxygen saturation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {9--16},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_3_a1/}
}
TY  - JOUR
AU  - D. O. Yasukevich
TI  - Hydrodynamical processes in medical devices for blood-oxygen saturation
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 9
EP  - 16
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_3_a1/
LA  - ru
ID  - MM_2008_20_3_a1
ER  - 
%0 Journal Article
%A D. O. Yasukevich
%T Hydrodynamical processes in medical devices for blood-oxygen saturation
%J Matematičeskoe modelirovanie
%D 2008
%P 9-16
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_3_a1/
%G ru
%F MM_2008_20_3_a1
D. O. Yasukevich. Hydrodynamical processes in medical devices for blood-oxygen saturation. Matematičeskoe modelirovanie, Tome 20 (2008) no. 3, pp. 9-16. http://geodesic.mathdoc.fr/item/MM_2008_20_3_a1/

[1] Burgreen G. W., Antaki J. F., Wu Z. F., Holmes A. J., “Computational fluid dynamics as development tool for rotary blood pumps”, Artificial Organs, 25 (2001), 336–340 | DOI

[2] van Driel M. R., “Cardioplegia Heat exchanger designing modeling using computational fluid dynamics”, Perfusion, 15 (2000), 541–548

[3] Gartner M. J., Wilhelm C. R., Gage K. L., Fabrizio M. C., “Modeling flow effects on trombotic deposition in a membrane oxygenator”, Artificial Organs, 24 (2000), 29–36 | DOI

[4] Gage K. L., Gartner M. J., Burgreen G. W., Wagner W. R., “Predicting membrane oxygenator pressure drop using computational fluid dynamics”, Artificial Organs, 26 (2002), 600–607 | DOI

[5] Wang J. H., “Application of CFD in the designing of a membrane oxygenator”, Journal of Mechanics in Medicine and Biology, 1:1 (2001), 11–16 | DOI

[6] Mulholland J. W., Shelton J. C., Luo X. Y., “Blood flow and damage by the roller pumps during cardiopulmonary bypass”, J. of Fluid and Structures, 20 (2005), 129–140 | DOI

[7] Yurchenko V. N., Faddeev A. A., Kuznetsova E. A., Gidrodinamika dvukhstvorchatykh iskusstvennykh klapanov serdtsa, preprint No 701, IPMekh, M, 2002

[8] Rukovodstvo polzovatelya po sisteme modelirovaniya dvizheniya zhidkosti i gaza FlowVision, ZAO “TeSIS”, M., 2007

[9] Levtov V. A., Regirer S. A., Shadrina I. Kh., Reologiya krovi, Meditsina, M., 1982

[10] Dzhavakhyan R. P., Arzumyan O. S., “Metodika rascheta rolikovogo nasosa, obespechivayuschego blizkii k fiziologicheskomu preryvistyi potok krovi”, Informatsionnye tekhnologii i upravlenie: Nauch.-tekhn. Sbornik, 2003, no. 1–2, 8–16

[11] Gramm M. I., “Primenenie DPF i BPF k resheniyu sistem lineinykh algebraicheskikh uravnenii tsepei”, Izv vuzov. Elektromekhanika, 1991, no. 9