The generalized statement of the problem of a two--phase liquid flow with continuously changing interface
Matematičeskoe modelirovanie, Tome 20 (2008) no. 3, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the two-dimension problem of a two-phase immiscible liquid flow in the formulation of the incompressible Navier-Stokes equations with continuously changing interface is considered. For its definition during each moment of time is used so-called level set function. Besides discontinuous coefficients of kinematic viscosity and density in the formulation of a problem the effect of a surface tension is included. The generalized statement of a problem included conditions of the matching of the solution (in weak sense) on the common boundary between liquids is certain.
@article{MM_2008_20_3_a0,
     author = {A. V. Rukavishnikov},
     title = {The generalized statement of the problem of a two--phase liquid flow with continuously changing interface},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_3_a0/}
}
TY  - JOUR
AU  - A. V. Rukavishnikov
TI  - The generalized statement of the problem of a two--phase liquid flow with continuously changing interface
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 3
EP  - 8
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_3_a0/
LA  - ru
ID  - MM_2008_20_3_a0
ER  - 
%0 Journal Article
%A A. V. Rukavishnikov
%T The generalized statement of the problem of a two--phase liquid flow with continuously changing interface
%J Matematičeskoe modelirovanie
%D 2008
%P 3-8
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_3_a0/
%G ru
%F MM_2008_20_3_a0
A. V. Rukavishnikov. The generalized statement of the problem of a two--phase liquid flow with continuously changing interface. Matematičeskoe modelirovanie, Tome 20 (2008) no. 3, pp. 3-8. http://geodesic.mathdoc.fr/item/MM_2008_20_3_a0/

[1] Drazin P., Reid W., Hydrodynamic stability, Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl

[2] Joseph D., Saut J., “Short-wave instabilities and ill-posed initial-value problems”, Theoret. Comput. Fluid Dynamics, 1 (1990), 191–227 | DOI | Zbl

[3] Osher S., Sethian J., “Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations”, J. Comput. Phys., 79 (1988), 12–49 | DOI | MR | Zbl

[4] Chang Y., Hou T., Merriman B., Osher S., “A level set formulation of eulerian interface captured methods for incompressible fluid flows”, J. Comput. Phys., 124 (1996), 449–464 | DOI | MR | Zbl

[5] Gibou F., Chen L., Nguyen D., Banerjee S., “A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change”, J. Comput. Phys., 222 (2006), 536–555 | DOI | MR

[6] Sussman M., Smith K., Hussaini M., Ohta M., Wei Z. R., “A sharp interface method for incompressible two-phase flows”, J. Comput. Phys., 221 (2006), 469–505 | DOI | MR

[7] Bernardi C., Maday Y., Patera A., “A New nonconforming approach to domain decomposition: the mortar element method”, Nonlinear Partial Differential Equations and their Applications, Pitman, Paris, 1989, 13–51 | MR

[8] Flemisch B., Melenk J. M., Wohlmuth B., “Mortar methods with curved interfaces”, APNUM, 54 (2005), 339–361 | MR | Zbl

[9] Rukavishnikov A. V., Rukavishnikov V. A., “Method of numerical analysis for the Stokes problem with discontinuous coefficient”, Proceedings of the International Conference on Computational Mathematics, ICCM-2004. Part II, eds. G. A. Mikhailov, V. P. Il'in, Yu. M. Laevsky, Inst. of Comp. Math. and Math. Geoph. Publ., Novosibirsk, 2004, 907–915

[10] Rukavishnikov A. V., “Chislennyi metod resheniya zadachi Stoksa s razryvnym koeffitsientom”, Vychislitelnye metody i programmirovanie, 6:1 (2005), 21–30

[11] Rukavishnikov A. V., Rukavishnikov V. A., Otsenka skorosti skhodimosti nekonformnogo metoda konechnykh elementov dlya zadachi Stoksa s razryvnymi koeffitsientami, Khabarovsk, 2003, 57 pp. ; Препринт No 71, Вычислительный центр ДВО РАН | Zbl

[12] Sedov L. I., Mekhanika sploshnoi sredy, Nauka, M., 1970