Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2008_20_1_a8, author = {B. V. Rogov and M. N. Mikhailovskaya}, title = {Some aspects of compact difference scheme convergence}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {99--116}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2008_20_1_a8/} }
B. V. Rogov; M. N. Mikhailovskaya. Some aspects of compact difference scheme convergence. Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 99-116. http://geodesic.mathdoc.fr/item/MM_2008_20_1_a8/
[1] A. I. Tolstykh, Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 230 pp. | MR
[2] B. Cockburn, Shu C. W., “Nonlinearly stable compact schemes for shock calculations”, SIAM. J. Numer. Anal., 31:3 (1994), 607–627 | DOI | MR | Zbl
[3] A. I. Tolstykh, D. A. Shirobokov, “O raznostnykh skhemakh s kompaktnymi approksimatsiyami pyatogo poryadka dlya prostranstvennykh techenii vyazkogo gaza”, Zhurnal vychisl. matem. i matem. fiziki, 36:4 (1996), 71–85 | MR | Zbl
[4] N. A. Adams, K. Shariff, “A high resolution hybrid compact-ENO scheme for shock-turbulence interaction problems”, J. Comp. Phys., 127:1 (1996), 27–51 | DOI | MR | Zbl
[5] A. I. Tolstykh, M. V. Lipavskii, “On performance of methods with third- and fifth-order compact upwind differencing”, J. Comp. Phys., 140:2 (1998), 205–232 | DOI | MR | Zbl
[6] S. F. Radwan, “On the Fourth-Order Accurate Compact ADI Scheme for Solving the Unsteady Nonlinear Coupled Burgers' Equations”, Journal of Nonlinear Mathematical Physics, 6:1 (1999), 13–34 | DOI | MR | Zbl
[7] M. Y. Shen, Z. B. Zhang, X. L. Niu, “A new way for constructing high accuracy shock-capturing generalized compact difference schemes”, Comput. Methods Appl. Mech. Engng., 192 (2003), 2703–2725 | DOI | MR | Zbl
[8] S. F. Radwan, “Comparison of higher-order accurate schemes for solving the two-dimensional unsteady Burgers' Equations”, J. of Computational and Applied Mathematics, 174 (2005), 383–397 | DOI | MR | Zbl
[9] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.
[10] N. N. Kalitkin, I. V. Ritus, Kompleksnaya skhema resheniya parabolicheskikh uravnenii, preprint No 90, Inst. Prikl. Matem., M., 1981, 18 pp.
[11] E. Yu. Dnestrovskaya, N. N. Kalitkin, I. V. Ritus, “Reshenie uravnenii v chastnykh proizvodnykh skhemami s kompleksnymi koeffitsientami”, Matematicheskoe modelirovanie, 3:9 (1991), 114–127 | MR
[12] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001
[13] N. N. Kalitkin, B. V. Rogov, I. A. Sokolova, “Dvukhstadiinyi marshevyi metod rascheta vyazkikh techenii cherez soplo Lavalya”, Matematicheskoe modelirovanie, 11:7 (1999), 95–117
[14] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978 | MR
[15] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.
[16] L. M. Skvortsov, “Diagonalno neyavnye FSAL-metody Runge–Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matematicheskoe modelirovanie, 14:2 (2002), 3–17 | MR | Zbl
[17] N. V. Shirobokov, “Diagonalno-neyavnye skhemy Runge–Kutty”, Zhurnal vychisl. matem. i matem. fiziki, 42:7 (2002), 1013–1018 | MR | Zbl
[18] N. V. Shirobokov, “Rasscheplenie evolyutsionnykh uravnenii na osnove diagonalno-neyavnykh metodov”, Zhurnal vychisl. matem. i matem. fiziki, 43:9 (2003), 1402–1408 | MR | Zbl
[19] A. B. Alshin, E. A. Alshina, N. N. Kalitkin, A. B. Koryagina, “Skhemy Rozenbroka s kompleksnymi koeffitsientami dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Zhurnal vychisl. matem. i matem. Fiziki, 46:8 (2006), 1392–1414 | MR
[20] J. C. Butcher, “Coefficients for study of Runge–Kutta integration processes”, J. Austral. Math. Soc., 3 (1963), 185–201 | DOI | MR | Zbl
[21] N. N. Kalitkin, L. V. Kuzmina, Integrirovanie zhestkikh sistem differentsialnykh uravnenii, preprint No 80 i No 90, IPM im. Keldysha, Moskva, 1981
[22] N. N. Kalitkin, S. L. Panchenko, “Optimalnye skhemy dlya zhestkikh neavtonomnykh sistem”, Matematicheskoe modelirovanie, 11:6 (1999), 52–81 | MR
[23] Dzh. Kholl, Dzh. Uatt (red.), Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979
[24] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR
[25] E. A. Alshina, E. M. Zaks, N. N. Kalitkin, “Optimalnye parametry yavnykh skhem Runge–Kutty nevysokikh poryadkov”, Matematicheskoe modelirovanie, 18:2 (2006), 61–71 | MR | Zbl