Some aspects of compact difference scheme convergence
Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 99-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

Difference schemes, compact on space variables, i.e. constructed for each space direction on the two-or three-dot stencil, have the advantages of efficiency and convenience of boundary conditions formulation in comparison with other schemes of the high order of accuracy. Originally these schemes were developed for receiving smooth solutions. In the last two decades compact schemes are actively used for calculating gas dynamics flows with shock waves. However to obtain numerical solution with the guaranteed accuracy the knowledge of real properties of difference schemes at calculation of solutions with features (breaks) is required. Now this question for of some widely used compact schemes is no yet studied. In the present paper the properties of the compact schemes constructed by a method of lines are studied. As the model problem for analyzing the scheme properties, the initial-boundary problem for a linear equation of a thermal conduction with discontinuous initial data is chosen. In a method of lines, the space derivative in the thermal conduction equation is approximated on a two-point stencil according to the formula of compact differentiation of the fourth order of accuracy. For solving an evolutionary system of ODEs various implicit one-step two-and three-stage schemes of the second and third order of accuracy are considered. Relation between properties of schemes stability functions and space monotonicity of numerical solution is analysed. Advantage of compact schemes in comparison with the traditional schemes using three-point approximating by a space derivative with the second order of accuracy in calculations on long time intervals is shown.
@article{MM_2008_20_1_a8,
     author = {B. V. Rogov and M. N. Mikhailovskaya},
     title = {Some aspects of compact difference scheme convergence},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--116},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_1_a8/}
}
TY  - JOUR
AU  - B. V. Rogov
AU  - M. N. Mikhailovskaya
TI  - Some aspects of compact difference scheme convergence
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 99
EP  - 116
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_1_a8/
LA  - ru
ID  - MM_2008_20_1_a8
ER  - 
%0 Journal Article
%A B. V. Rogov
%A M. N. Mikhailovskaya
%T Some aspects of compact difference scheme convergence
%J Matematičeskoe modelirovanie
%D 2008
%P 99-116
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_1_a8/
%G ru
%F MM_2008_20_1_a8
B. V. Rogov; M. N. Mikhailovskaya. Some aspects of compact difference scheme convergence. Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 99-116. http://geodesic.mathdoc.fr/item/MM_2008_20_1_a8/

[1] A. I. Tolstykh, Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 230 pp. | MR

[2] B. Cockburn, Shu C. W., “Nonlinearly stable compact schemes for shock calculations”, SIAM. J. Numer. Anal., 31:3 (1994), 607–627 | DOI | MR | Zbl

[3] A. I. Tolstykh, D. A. Shirobokov, “O raznostnykh skhemakh s kompaktnymi approksimatsiyami pyatogo poryadka dlya prostranstvennykh techenii vyazkogo gaza”, Zhurnal vychisl. matem. i matem. fiziki, 36:4 (1996), 71–85 | MR | Zbl

[4] N. A. Adams, K. Shariff, “A high resolution hybrid compact-ENO scheme for shock-turbulence interaction problems”, J. Comp. Phys., 127:1 (1996), 27–51 | DOI | MR | Zbl

[5] A. I. Tolstykh, M. V. Lipavskii, “On performance of methods with third- and fifth-order compact upwind differencing”, J. Comp. Phys., 140:2 (1998), 205–232 | DOI | MR | Zbl

[6] S. F. Radwan, “On the Fourth-Order Accurate Compact ADI Scheme for Solving the Unsteady Nonlinear Coupled Burgers' Equations”, Journal of Nonlinear Mathematical Physics, 6:1 (1999), 13–34 | DOI | MR | Zbl

[7] M. Y. Shen, Z. B. Zhang, X. L. Niu, “A new way for constructing high accuracy shock-capturing generalized compact difference schemes”, Comput. Methods Appl. Mech. Engng., 192 (2003), 2703–2725 | DOI | MR | Zbl

[8] S. F. Radwan, “Comparison of higher-order accurate schemes for solving the two-dimensional unsteady Burgers' Equations”, J. of Computational and Applied Mathematics, 174 (2005), 383–397 | DOI | MR | Zbl

[9] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.

[10] N. N. Kalitkin, I. V. Ritus, Kompleksnaya skhema resheniya parabolicheskikh uravnenii, preprint No 90, Inst. Prikl. Matem., M., 1981, 18 pp.

[11] E. Yu. Dnestrovskaya, N. N. Kalitkin, I. V. Ritus, “Reshenie uravnenii v chastnykh proizvodnykh skhemami s kompleksnymi koeffitsientami”, Matematicheskoe modelirovanie, 3:9 (1991), 114–127 | MR

[12] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001

[13] N. N. Kalitkin, B. V. Rogov, I. A. Sokolova, “Dvukhstadiinyi marshevyi metod rascheta vyazkikh techenii cherez soplo Lavalya”, Matematicheskoe modelirovanie, 11:7 (1999), 95–117

[14] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978 | MR

[15] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[16] L. M. Skvortsov, “Diagonalno neyavnye FSAL-metody Runge–Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matematicheskoe modelirovanie, 14:2 (2002), 3–17 | MR | Zbl

[17] N. V. Shirobokov, “Diagonalno-neyavnye skhemy Runge–Kutty”, Zhurnal vychisl. matem. i matem. fiziki, 42:7 (2002), 1013–1018 | MR | Zbl

[18] N. V. Shirobokov, “Rasscheplenie evolyutsionnykh uravnenii na osnove diagonalno-neyavnykh metodov”, Zhurnal vychisl. matem. i matem. fiziki, 43:9 (2003), 1402–1408 | MR | Zbl

[19] A. B. Alshin, E. A. Alshina, N. N. Kalitkin, A. B. Koryagina, “Skhemy Rozenbroka s kompleksnymi koeffitsientami dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Zhurnal vychisl. matem. i matem. Fiziki, 46:8 (2006), 1392–1414 | MR

[20] J. C. Butcher, “Coefficients for study of Runge–Kutta integration processes”, J. Austral. Math. Soc., 3 (1963), 185–201 | DOI | MR | Zbl

[21] N. N. Kalitkin, L. V. Kuzmina, Integrirovanie zhestkikh sistem differentsialnykh uravnenii, preprint No 80 i No 90, IPM im. Keldysha, Moskva, 1981

[22] N. N. Kalitkin, S. L. Panchenko, “Optimalnye skhemy dlya zhestkikh neavtonomnykh sistem”, Matematicheskoe modelirovanie, 11:6 (1999), 52–81 | MR

[23] Dzh. Kholl, Dzh. Uatt (red.), Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979

[24] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[25] E. A. Alshina, E. M. Zaks, N. N. Kalitkin, “Optimalnye parametry yavnykh skhem Runge–Kutty nevysokikh poryadkov”, Matematicheskoe modelirovanie, 18:2 (2006), 61–71 | MR | Zbl