Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2008_20_1_a7, author = {D. Yu. Ignatiev and M. A. Khanin}, title = {Optimization model of collagen {type~IV} limited proteolyses}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {92--98}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2008_20_1_a7/} }
D. Yu. Ignatiev; M. A. Khanin. Optimization model of collagen type~IV limited proteolyses. Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 92-98. http://geodesic.mathdoc.fr/item/MM_2008_20_1_a7/
[1] Mignatti P. and Rifkin D. B., “Biology and Biochemestry of Proteinases in Tumor Invasion”, Physiological Reviews, 73:1 (1993), 161–195
[2] Nagase H., Woessner J. F., “Matrix Metalloproteinases”, J. Biol. Chem., 274:31 (1999), 21491–21494 | DOI
[3] Ries C. and Petrides P. E., “Cytokine Regulation of Matrix Metalloproteinase Activity and Its Regulatory Dysfunction in Disease”, Biol. Chem. Hoppe-Seyler, 376 (1995), 345–355
[4] Benbow U., Schoenermark M. P., Mitchell T. I. et. al., “A Novel Host/Tumor Cell Interaction Activates Matrix Metalloproteinase 1 and Mediates Invasion the Type 1 Collagen”, J. Biol. Chem., 274 (1999), 25371–25378 | DOI
[5] Will H., Atkinson S. J., Butler G. S. et. al., “The Soluble Catalytic Domain of Membrane Type 1 Matrix Metalloproteinase Cleaves the Propeptide of Progelatinase A and Initiates Autoproteolytic Activation”, J. Biol. Chem., 271:29 (1996), 17119–17123 | DOI
[6] Will H., Atkinson S. J., Butler G. S. et al., J. Biol. Chem., 271 (1996), 17119–17123 | DOI
[7] English W. R., Holtz B., Vogt G. et al., J. Biol. Chem., 276 (2001), 42018–42026 | DOI
[8] Olson M. W., Toth M., Gervasi D. C. et. al., “High Affinity Binding of Latent Matrix Metalloproteinase-9 to the a2(IV) Chain of Collagen IV”, J. Biol. Chem., 273:17 (1998), 10672–10681 | DOI
[9] Murray C. D., “The physiological principle of minimum work I: the vascular system and the cost of blood volume”, Prot. Nat. Acad. Sci., 12 (1926), 207–214 | DOI
[10] Cohn D., “Optimal systems I: the vascular system”, Bull. Math. Biophys., 16 (1955), 59–74 | DOI
[11] Khanin M. A., Dorfman N. L., Bukharov I. B. i dr., Ekstremalnye printsipy v biologii i fiziologii, Nauka, M., 1978 | Zbl
[12] Khanin M. A., Bukharov I. B., “A mathematical model of the functional state of the oxygen transport system”, Bull. Math. Biol., 42 (1980), 627–645 | MR | Zbl
[13] Khanin M. A., Bukharov I. B., “A mathematical model of the pathological functional state of the oxygen transport system”, J. Theor. Biol., 86 (1984), 46115–46125
[14] Khanin M. A., Bukharov I. B., “A mathematical model of the exercise functional state of the oxygen transport system”, J. Theor. Biol., 137 (1989), 191–201 | DOI | MR
[15] Chernousko F. L., “Optimalnye vetvyaschiesya truboprovodnye struktury”, Prikl. Mat. Mekh., 41 (1977), 376–383
[16] Chernousko F. L., “Optimalnye vetvyaschiesya truboprovodnye struktury v biomekhanike”, Mekh. Kompozits. Mater., 16 (1980), 308–311
[17] Kamiya A., Togawa T., “Optimal branching structure of the vascular tree”, Bull. Math. Biophys., 34 (1972), 431–438 | DOI
[18] Horsefield K., Cumming G., “Angles of branching and diameters of branches in the human bronchial tree”, Bull. Math. Biophys., 29 (1967), 245–259 | DOI
[19] Zamir M., “Optimality principles in arterial branching”, J. Theor. Biol., 62 (1976), 227–251 | DOI
[20] Uylings H. B. M., “Optimization of diameters and bifurcation angles in lung and vascular tree structures”, Bull. Math. Biol., 39 (1997), 509–515
[21] Khanin M. A., Bukharov I. B., “Optimal structure of the microcirculatory Bed”, J. Theor. Biol., 169 (1991), 267–273 | DOI
[22] Milsum J. H., “Optimization aspects in biological control theory”, Advances in biomedical engineering and medical physics, V. 1, ed. S. N. Levine, Interscience, New York, 1968, 243–278
[23] Rosen R., Optimality Principles in Biology, Butterworths, London, U.K., 1967 | Zbl