Selfconsistent compensated microfield model for strongly coupled plasma
Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 61-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The compensated microfield model of plasma non-ideality was proposed as the essential improvement of traditional microfield models. In this model double contribution of microfield in truncation of statistical sums was removed. The new method of truncation of statistical sums was compared with experiments, Debye model and other well-known models. It was found that only the microfield model explained experiments correctly. Calculations of Li and Hg ionizations were performed. Metalization of plasma — jump ionization growth process from 0 to 1 in the low temperature and normal density area — is described. Calculation of Hg vapour ionization describes well-known experiments of measurement of conductivity of this vapour.
@article{MM_2008_20_1_a4,
     author = {N. N. Kalitkin and I. A. Kozlitin},
     title = {Selfconsistent compensated microfield model for strongly coupled plasma},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {61--76},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_1_a4/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - I. A. Kozlitin
TI  - Selfconsistent compensated microfield model for strongly coupled plasma
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 61
EP  - 76
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_1_a4/
LA  - ru
ID  - MM_2008_20_1_a4
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A I. A. Kozlitin
%T Selfconsistent compensated microfield model for strongly coupled plasma
%J Matematičeskoe modelirovanie
%D 2008
%P 61-76
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_1_a4/
%G ru
%F MM_2008_20_1_a4
N. N. Kalitkin; I. A. Kozlitin. Selfconsistent compensated microfield model for strongly coupled plasma. Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 61-76. http://geodesic.mathdoc.fr/item/MM_2008_20_1_a4/

[1] Ebeling V., Kreft V., Kremp D., Teoriya svyazannykh sostoyanii i ionizatsionnogo ravnovesiya v plazme i tverdom tele, Mir, M., 1979

[2] Fortov V. E., Yakubov I. T., Fizika neidealnoi plazmy, OIKhV i IVT AN SSSR, Chernogolovka, 1984

[3] Grim G., Ushirenie spektralnykh linii v plazme, Mir, M., 1978

[4] Sevastyanenko V. G., Vliyanie vzaimodeistviya chastits v nizkotemperaturnoi plazme na ee sostav i opticheskie svoistva, Preprint No 30, ITPM SO AN SSSR, Novosibirsk, 1980

[5] Volokitin V. S., Golosnoi I. O., Kalitkin N. N., “Shirokodiapazonnoe uravnenie sostoyaniya veschestva. 1. Analiz modelnoi neidealnosti”, Izvestiya vysshikh uchebnykh zavedenii. Fizika, 11 (1994), 23–43

[6] Volokitin V. S., Golosnoi I. O., Kalitkin N. N., “Shirokodiapazonnoe uravnenie sostoyaniya veschestva. 2. Mikropolevaya model”, Izvestiya vysshikh uchebnykh zavedenii. Fizika, 4 (1995), 11–31

[7] Kalitkin N. N., Pavlov A. S., “Metod rascheta sostava neidealnoi plazmy”, Matematicheskoe modelirovanie, 16:12 (2004), 61–68 | MR | Zbl

[8] Golosnoi I. O., “Analiticheskie approksimatsii dlya ushireniya spektralnykh linii vodorodopodobnykh ionov”, Fizika plazmy, 27:6 (2001), 526–535

[9] Gavrilov V. E., “Diagnostika i kontinuum izlucheniya slaboneidealnoi plazmy vodoroda”, Optika i spektroskopiya, 72:1 (1992), 16–23

[10] Timan L. B., “Vliyanie vzaimodeistviya ionov na ikh ravnovesnye kontsentratsii v sluchae mnogokratnoi ionizatsii gaza”, ZhETF, 27:6(12) (1954), 708–711

[11] Larkin A. I., “Termodinamicheskie funktsii nizkotemperaturnoi plazmy”, ZhETF, 38:6 (1960), 1896–1898 | MR

[12] Hooper C. F., Mancini Jr. R. C., Kilcrease D. P., Woltz L. A., Richardson M. C., Bradley D. K., Jaanimagi P. A., “Analysis of $K$- and $L$-shell spectra emitted from implosions of argon filled and argon/krypton filled microballoons”, SPIE. High intensity laser-matter interactions, 913 (1988), 129–137

[13] Hensel F., Franck E. U., “Metal-nonmetal transition in dense mercury vapor”, Rev. Modern Phys., 40:4 (1968), 697–703 | DOI

[14] Alekseev V. A., TVT, 6:6 (1968), 961–965

[15] Kikoin I. K., Senchenkov A. P., “Elektroprovodnost i uravnenie sostoyaniya rtuti v oblasti temperatur 0–2000 S i davlenii 200–5000 atmosfer”, Fizika metallov i metallovedenie, 24:5 (1967), 843–858