Selfconsistent compensated microfield model for strongly coupled plasma
Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 61-76

Voir la notice de l'article provenant de la source Math-Net.Ru

The compensated microfield model of plasma non-ideality was proposed as the essential improvement of traditional microfield models. In this model double contribution of microfield in truncation of statistical sums was removed. The new method of truncation of statistical sums was compared with experiments, Debye model and other well-known models. It was found that only the microfield model explained experiments correctly. Calculations of Li and Hg ionizations were performed. Metalization of plasma — jump ionization growth process from 0 to 1 in the low temperature and normal density area — is described. Calculation of Hg vapour ionization describes well-known experiments of measurement of conductivity of this vapour.
@article{MM_2008_20_1_a4,
     author = {N. N. Kalitkin and I. A. Kozlitin},
     title = {Selfconsistent compensated microfield model for strongly coupled plasma},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {61--76},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_1_a4/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - I. A. Kozlitin
TI  - Selfconsistent compensated microfield model for strongly coupled plasma
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 61
EP  - 76
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_1_a4/
LA  - ru
ID  - MM_2008_20_1_a4
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A I. A. Kozlitin
%T Selfconsistent compensated microfield model for strongly coupled plasma
%J Matematičeskoe modelirovanie
%D 2008
%P 61-76
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_1_a4/
%G ru
%F MM_2008_20_1_a4
N. N. Kalitkin; I. A. Kozlitin. Selfconsistent compensated microfield model for strongly coupled plasma. Matematičeskoe modelirovanie, Tome 20 (2008) no. 1, pp. 61-76. http://geodesic.mathdoc.fr/item/MM_2008_20_1_a4/