Modeling of Farley-Buneman instability using four-dimensional kinetic equation
Matematičeskoe modelirovanie, Tome 20 (2008) no. 12, pp. 89-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical modeling of the Farley-Buneman instability in the E-region of the Earth's ionosphere is performed with the help of numerical methods. The mathematical model of instability consists of two-dimensional fluid electron equation, two-dimensional Poisson equation and four-dimensional kinetic ion equation. This model takes into account all major features crucial for development and nonlinear saturation of the instability. The developed algorithm allows to perform modeling with a wide range of physical parameters corresponding to the Earth's ionosphere conditions. Previous studies of Farley-Buneman instability were based on particle-in-cell methods, which produce substantial numerical noise comparable to ion and electron density fluctuations. The use of numerical methods allows to avoid numerical noises and so to perform simulations with the driving electric field which is close to its linear threshold. Results of numerical computations show qualitative agreement with previous simulations. The following major effects of instability which are also presented in experimental data were observed: nonlinear saturation, increase of wavelength in the quasi-steady saturation state, and deviation of dominating wave vector from the direction of the electron drift velocity. The developed simulator is optimized for runs on multiprocessor computers. It can be used for explanations of some Earth's ionosphere phenomena.
@article{MM_2008_20_12_a6,
     author = {D. V. Kovalev},
     title = {Modeling of {Farley-Buneman} instability using four-dimensional kinetic equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--104},
     publisher = {mathdoc},
     volume = {20},
     number = {12},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_12_a6/}
}
TY  - JOUR
AU  - D. V. Kovalev
TI  - Modeling of Farley-Buneman instability using four-dimensional kinetic equation
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 89
EP  - 104
VL  - 20
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_12_a6/
LA  - ru
ID  - MM_2008_20_12_a6
ER  - 
%0 Journal Article
%A D. V. Kovalev
%T Modeling of Farley-Buneman instability using four-dimensional kinetic equation
%J Matematičeskoe modelirovanie
%D 2008
%P 89-104
%V 20
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_12_a6/
%G ru
%F MM_2008_20_12_a6
D. V. Kovalev. Modeling of Farley-Buneman instability using four-dimensional kinetic equation. Matematičeskoe modelirovanie, Tome 20 (2008) no. 12, pp. 89-104. http://geodesic.mathdoc.fr/item/MM_2008_20_12_a6/

[1] Farley D. T., “A plasma instability resulting in field-aligned irregularities in the ionosphere”, J. Geophys. Res., 68 (1963), 6083–6097 | DOI | Zbl

[2] Buneman O., “Excitation of field aligned sound waves by electron streams”, Phys. Rev. Lett., 10 (1963), 285–288 | DOI

[3] Fejer B. G., Providakes J., Farley D. T., “Theory of plasma waves in the auroral E region”, J. Geophys. Res., 89 (1984), 7487–7494 | DOI

[4] Dimant Y. S., Sudan R. N., “Kinetic theory of low-frequency cross-field instability in a weakly ionized plasma. I”, Phys. Plasmas, 2 (1995), 1157–1168 | DOI

[5] Dimant Y. S., Sudan R. N., “Kinetic theory of the Farley-Buneman instability in the E region of the ionosphere”, J. Geophys. Res., 100 (1995), 14605–14624 | DOI

[6] Kissack R. S., St.-Maurice J.-P., Moorcroft D. R., “Electron thermal effects on the Farley-Buneman fluid dispersion relation”, Phys. Plasmas, 2 (1995), 1032–1055 | DOI

[7] Drexler J., St.-Maurice J.-P., Chen D., Moorcroft D. R., “New insights from a nonlocal generalization of the Farley-Buneman instability problem at high latitudes”, Ann. Geophys., 20 (2002), 2003–2025

[8] Dimant Y. S., Oppenheim M. M., “Ion thermal effects on E-region instabilities: linear theory”, J. Atmos. Terr. Phys., 66 (2004), 1639–1654 | DOI

[9] Scadron J., Weinstock J. D., “Nonlinear stabilization of a two-stream plasma instability in the ionosphere”, J. Geophys. Res., 74 (1969), 5113–5126 | DOI

[10] Sudan R. N., Akinrimisi J., Farley D. T., “Generation of small-scale irregularities in the equatorial electrojet”, J. Geophys. Res., 78 (1973), 240–248 | DOI

[11] Hamza A. M., St.-Maurice J.-P., “A fully self-consistent fluid theory of anomalous transport in Farley-Buneman turbulence”, J. Geophys. Res., 100 (1995), 9653–9668 | DOI

[12] Newman A. L., Ott E., “Nonlinear Simulations of Type I Irregularities in the Equatorial Electrojet”, J. Geophys. Res., 86 (1981), 6879–6891 | DOI

[13] Machida S., Goertz C. K., “Computer Simulation of the Farley-Buneman Instability and Anomalous Electron Heating in the Auroral Ionosphere”, J. Geophys. Res., 93 (1988), 9993–10000 | DOI

[14] Schlegel K., Thiemann H., “Particle-in-cell plasma simulations of the modified two-stream instability”, Ann. Geophys., 12 (1994), 1091–1100

[15] Janhunen P., “Perpendicular particle simulation of the E-region Farley-Buneman instability”, J. Geophys. Res., 99 (1994), 11461–11473 | DOI

[16] Oppenheim M. M., Dimant Y. S., “Ion thermal effects on E-region instabilities: 2D kinetic simulations”, J. Atmos. Terr. Phys., 66 (2004), 1655–1668 | DOI

[17] Oppenheim M. M., Otani N. F., “Spectral characteristics of the Farley-Buneman instability: Simulations versus observations”, J. Geophys. Res., 101 (1996), 24573–24582 | DOI

[18] Oppenheim M. M., Otani N. F., Ronchi C., “Saturation of the Farley-Buneman instability via nonlinear electron $\mathbf E\times\mathbf B$ drifts”, J. Geophys. Res., 101 (1996), 17273–17286 | DOI

[19] Dyrud L., Krane B., Oppenheim M., Pécseli H. L., Schlegel K., Trulsen J., Wernik A. W., “Lowfrequency electrostatic waves in the ionospheric E-region: a comparison of rocket observations and numerical simulations”, Ann. Geophys., 24 (2006), 2959–2979

[20] Bhatnagar P. L., Gross E. P., Krook M., “A model for collision processes in gases. I. Small amplitude processes in charged and Neutral one-component systems”, Phys. Rev., 94 (1954), 511–525 | DOI | Zbl

[21] Dimant Y. S., Milikh G. M., “Model of anomalous electron heating in the E-region: 1. Basic theory”, J. Geophys. Res., 108 (2003), CiteID 1350 | DOI

[22] Farley D. T., “Theory of equatorial electrojet plasma waves: New developments and current status”, J. Atmos. Terr. Phys., 47 (1985), 729–744 | DOI

[23] Gurevich A. V., Nonlinear phenomena in the ionosphere, Springer-Verlag, New York, 1978

[24] Kagan L. M., St.-Maurice J.-P., “Impact of electron thermal effects on Farley-Buneman waves at arbitrary aspect angles”, J. Geophys. Res., 109 (2004), A12302 | DOI

[25] Schunk R. W., Nagy A. F., Ionospheres, Cambridge University Press, 2000

[26] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[27] Samarskii A. A., Gulin A. V., Chislennye metody matematicheskoi fiziki, Nauch. mir, M., 2000

[28] Press W., Teulkovsky S., Vetterling W., Flannery B., Numerical recipes. The art of scientific computing, Cambridge University Press, 2007 ; http: www.nr.com | MR | Zbl

[29] Frigo M., Johnson S. G., The FFTW web page, , 2005 http: www.fftw.org

[30] Frigo M., Johnson S. G., “The Design and Implementation of FFTW3”, Proceedings of the IEEE, 93, no. 2, 2005, 216–231

[31] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR