Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2008_20_12_a5, author = {E. A. Muravleva}, title = {Finite-difference schemes for computation viscoplastic medium flow in channel}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {76--88}, publisher = {mathdoc}, volume = {20}, number = {12}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2008_20_12_a5/} }
E. A. Muravleva. Finite-difference schemes for computation viscoplastic medium flow in channel. Matematičeskoe modelirovanie, Tome 20 (2008) no. 12, pp. 76-88. http://geodesic.mathdoc.fr/item/MM_2008_20_12_a5/
[1] Shwedov F. N., “La rigidite de liquides”, Rapport Congr. Intern. Phys., v. 1, Paris, 1900, 478–486
[2] Bingham F. C., Fluidity and Plasticity, New York, 1922
[3] Genki G., “Prostranstvennaya zadacha uprugogo i plasticheskogo ravnovesiya”, Izv. AN SSSR. OTN, 1937, no. 2
[4] Ilyushin A. A., “Deformatsiya vyazko-plasticheskogo tela”, Uch. zapiski MGU. Mekhanika, 1940, no. 39
[5] Oldroyd J. G., “Two-dimensional plastic flow of a Bingham solid. A plastic boundary-layer theory for slow motion”, Proc. Camb. Phil. Soc., 43 (1947), 383–395 | DOI | MR | Zbl
[6] Prager W., “On Slow Visco-Plastic Flow”, Chapter, Studies in Mathematics and Mechaniscs, Volume presented to Richard fon Mises, Academic Press, 1954 | MR | Zbl
[7] Mosolov P. P., Myasnikov V. P., “Variatsionnye metody v teorii techenii vyazko-plasticheskoi sredy”, PMM, 29:3 (1965), 468–492 | Zbl
[8] Mosolov P. P., Myasnikov V. P., “O zastoinykh zonakh techeniya vyazko-plasticheskoi sredy v trubakh”, PMM, 30:4 (1966), 705–717 | Zbl
[9] Mosolov P. P., Myasnikov V. P., “O kachestvennykh osobennostyakh techenii vyazko-plasticheskoi sredy v trubakh”, PMM, 31:3 (1967), 609–613 | MR | Zbl
[10] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR
[11] Mosolov P. P., Myasnikov V. P., Variatsionnye metody v teorii techenii zhestko-vyazkoplasticheskikh sred, Izd-vo MGU, M., 1971
[12] Dean E. J., Glowinski R., Guidoboni G., “On the numerical simulation of Bingham visco-plastic flow: Old and New results”, J. Non-Newtonian Fluid Mech., 142 (2007), 36–62 | DOI | Zbl
[13] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR
[14] Glowinski R., Numerical methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984 | MR | Zbl
[15] Karchevskii M. M., Lyashko A. D., Raznostnye skhemy dlya nelineinykh zadach matematicheskoi fiziki, Izd-vo KGU, Kazan, 1976
[16] Lapin A. V., Vvedenie v teoriyu variatsionnykh neravenstv, Izd-vo KGU, Kazan, 1981 | Zbl
[17] Lapin A. V., Setochnye approksimatsii variatsionnykh neravenstv, Izd-vo KGU, Kazan, 1984
[18] Roquet N., Saramito P., “An adaptive finite element method for viscoplastic fluid flows in pipes”, Comput. Meth. Appl. Mech. Eng., 190:40 (2001), 5391–5412 | DOI | Zbl
[19] Moyers-Gonzalez M. A., Frigaard I. A., “Numerical solution of duct flows of multiple visco-plastic fluids”, J. Non-Newtonian Fluid Mech., 122 (2004), 227–241 | DOI | Zbl
[20] Huilgol R. R., You Z., “Application of the augumented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids”, J. Non-Newtonian Fluid Mech., 128 (2005), 126–143 | DOI
[21] Fletcher K., Vychislitelnye metody v dinamike zhidkostei, T. 2, Mir, M., 1991