Direct numerical simulation of spatially localized structures and wave motions in turbulent shear flows. Numerical requirements
Matematičeskoe modelirovanie, Tome 20 (2008) no. 12, pp. 27-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new technique for integrating unsteady incompressible 3D Navier–Stokes equations is presented. Algorithm developed seems to be a fast, accurate, and robust tool for direct numerical simulation of both intermittent and fully developed turbulent flow regimes. The classical problem of viscous incompressible fluid flows in a circular pipe at transitional Reynolds numbers $1800\le\mathrm{Re}\le4000$ is taken as a model one. By means of direct numerical simulation statistically stationary Navier–Stokes solutions which describe turbulent (at $2500\le\mathrm{Re}\le4000$), intermittent (at $\mathrm{Re}=2200,2350$) and laminar ($\mathrm{Re}\le2000$) flow regimes are obtained. Turbulent flow regimes are characterized by complicated wave-like structure. To detect and analyze this structure mathematical model and algorithm must be specially tuned. Numerical solutions at $\mathrm{Re}=2200,2350$ describe equilibrium self-sustained flow regimes in which turbulent structures surrounded by almost laminar flow propagate downstream while preserving their length. Thus, theoretical confirmation of the existence of particular transitional flow regimes – equilibrium puffs – is achieved. Accuracy and stability of the method are thoroughly tested.
@article{MM_2008_20_12_a2,
     author = {V. G. Priymak},
     title = {Direct numerical simulation of spatially localized structures and wave motions in turbulent shear flows. {Numerical} requirements},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {27--43},
     publisher = {mathdoc},
     volume = {20},
     number = {12},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_12_a2/}
}
TY  - JOUR
AU  - V. G. Priymak
TI  - Direct numerical simulation of spatially localized structures and wave motions in turbulent shear flows. Numerical requirements
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 27
EP  - 43
VL  - 20
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_12_a2/
LA  - ru
ID  - MM_2008_20_12_a2
ER  - 
%0 Journal Article
%A V. G. Priymak
%T Direct numerical simulation of spatially localized structures and wave motions in turbulent shear flows. Numerical requirements
%J Matematičeskoe modelirovanie
%D 2008
%P 27-43
%V 20
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_12_a2/
%G ru
%F MM_2008_20_12_a2
V. G. Priymak. Direct numerical simulation of spatially localized structures and wave motions in turbulent shear flows. Numerical requirements. Matematičeskoe modelirovanie, Tome 20 (2008) no. 12, pp. 27-43. http://geodesic.mathdoc.fr/item/MM_2008_20_12_a2/

[1] Reynolds O., “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels”, Philos. Trans. Roy. Soc. London Ser. A, 174 (1883), 935–982 | DOI

[2] Wygnanski I. J., Champagne F. H., “On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug”, J. Fluid Mech., 59 (1973), 281–335 | DOI

[3] Wygnanski I., Sokolov M., Friedman D., “On transition in a pipe. Part 2. The equilibrium puff”, J. Fluid Mech., 69 (1975), 283–304 | DOI

[4] Rubin Y., Wygnanski I., Haritonidis J. H., “Further observations on transition in a pipe”, Laminar–Turbulent Transition, IUTAM Symposium, Springer, Stuttgart, Germany, 1980, 17–26

[5] Eliahou S., Tumin A., Wygnanski I., “Laminar–turbulent transition in Poiseuille pipe flow subjected to periodic perturbation emanating from the wall”, J. Fluid Mech., 361 (1998), 333–349 | DOI | MR | Zbl

[6] Bandyopadhyay P. R., “Aspects of the equilibrium puff in transitional pipe flow”, J. Fluid Mech., 163 (1986), 439–458 | DOI

[7] Darbyshire A. G., Mullin T., “Transition to turbulence in constant-mass-flux pipe flow”, J. Fluid Mech., 289 (1995), 83–114 | DOI

[8] Hof B., van Doorne C., Westerweel J., Nieuwstadt F. T. M., “Transition to turbulence in pipe flow”, Advances in Turbulence X, Proceedings of the Tenth European Turbulence Conference, eds. H. I. Andersson, P. A. Krogstad, CIMNE, Barcelona, 2004, 505–508

[9] Priimak V. G., “Rezultaty i vozmozhnosti pryamogo chislennogo modelirovaniya turbulentnykh techenii vyazkoi zhidkosti v krugloi trube”, DAN SSSR, 316:1 (1991), 71–76 | MR | Zbl

[10] Eggels J. G. M., Unger F., Weiss M. H., Westerweel J., Adrian R. J., Friedrich R., Nieuwstadt F. T. M., “Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment”, J. Fluid Mech., 268 (1994), 175–209 | DOI

[11] Nikitin N. V., “Pryamoe chislennoe modelirovanie trekhmernykh turbulentnykh techenii v trubakh krugovogo secheniya”, Izv. RAN MZhG, 1994, no. 6, 14–26

[12] Leonard A., Reynolds W. C., “Turbulence research by numerical simulation”, Proceedings, Symposium Held on the Occasion of the 70th Birthday of Hans Wolfgang Liepmann, Lecture Notes in Physics, 320, ed. D. Coles, Springer-Verlag, 1985, 113–142 | MR

[13] Shan H., Ma B., Zhang Z., Nieuwstadt F. T. M., “Direct numerical simulation of a puff and a slug in transitional cylindrical pipe flow”, J. Fluid Mech., 387 (1999), 39–60 | DOI | Zbl

[14] Priymak V. G., Miyazaki T., “Accurate Navier–Stokes investigation of transitional and turbulent flows in a circular pipe”, J. Comput. Phys., 142 (1998), 370–411 | DOI | MR | Zbl

[15] Priymak V. G., Miyazaki T., “Long-wave motions in turbulent shear flows”, Phys. Fluids, 6:10 (1994), 3454–3464 | DOI | Zbl

[16] Priymak V. G., Miyazaki T., “Direct numerical simulation of equilibrium spatially localized structures in pipe flow”, Phys. Fluids, 16:12 (2004), 4221–4234 | DOI

[17] Priymak V. G., Miyazaki T., “Turbulence statistics inside and outside an equilibrium puff in a circular pipe flow”, Advances in Turbulence X, Proceedings of the Tenth European Turbulence Conference, eds. H. I. Andersson, P. A. Krogstad, CIMNE, Barselona, 2004, 509–512

[18] Willis A. P., Kerswell R. R., “Critical behavior in the relaminarization of localized turbulence in pipe flow”, Phys. Rev. Lett., 98:1 (2007), 014501 | DOI | MR

[19] Faisst H., Eckhardt B., “Travelling waves in pipe flow”, Phys. Rev. Lett., 91:22 (2003), 224502 | DOI

[20] Kerswell R. R., Tutty O. R., “Recurrence of travelling waves in transitional pipe flow”, J. Fluid Mech., 584 (2007), 69–102 | DOI | MR | Zbl

[21] Garg V. K., Rouleau W. T., “Linear spatial stability of pipe Poiseuille flow”, J. Fluid Mech., 54 (1972), 113–127 | DOI | Zbl

[22] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988 | MR

[23] Kantuell B. Dzh., “Organizovannye dvizheniya v turbulentnykh potokakh”, Vikhri i volny, Sb. statei, Mir, M., 1984, 9–79

[24] Kim J., Moin P., Moser R., “Turbulence statistics in fully developed channel flow at low Reynolds number”, J. Fluid Mech., 177 (1987), 133–166 | DOI | Zbl

[25] Patel V. C., Head M. R., “Some observations on skin friction and velocity profiles in fully developed pipe and channel flows”, J. Fluid Mech., 38 (1969), 181–201 | DOI

[26] Shemer L., Wygnanski I., Kit E., “Pulsating flow in a pipe”, J. Fluid Mech., 153 (1985), 313–337 | DOI