Simulation of strong compression of a gas cavity in liquid
Matematičeskoe modelirovanie, Tome 20 (2008) no. 11, pp. 89-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

A technique of computation of strong compression of a gas cavity in liquid is presented. The shape of the cavity during compression is axially symmetric with relatively small deviation from the spherical one. The motion of the gas and liquid is described by two-dimensional dynamic equations of compressible liquid and gas with realistic equations of state. The influence of viscosity and heat conductivity is not taken into account. The cavity surface is defined as a contact boundary with the action of the surface tension. The coupled Euler–Lagrange coordinates with the bubble surface as a coordinate one are used. The spherical coordinates are taken as fixed ones. The equations of gas and liquid dynamics are solved by Godunov's method of the second-order of accuracy in space and time. The efficiency of the technique is investigated by computation of several model problems. It has been found that the technique proposed is more efficient than classic Godunov's scheme of the first order accuracy, which is usually used in literature for problems of strong compression of the bubble. One of possible scenarios of influence of small distortions of the spherical shape of the cavity on the distortion of sphericity of the radially-converging shock wave arising during strong compression has been shown.
@article{MM_2008_20_11_a7,
     author = {A. A. Aganin and M. A. Il'gamov and T. F. Khalitova},
     title = {Simulation of strong compression of a gas cavity in liquid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--103},
     publisher = {mathdoc},
     volume = {20},
     number = {11},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_11_a7/}
}
TY  - JOUR
AU  - A. A. Aganin
AU  - M. A. Il'gamov
AU  - T. F. Khalitova
TI  - Simulation of strong compression of a gas cavity in liquid
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 89
EP  - 103
VL  - 20
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_11_a7/
LA  - ru
ID  - MM_2008_20_11_a7
ER  - 
%0 Journal Article
%A A. A. Aganin
%A M. A. Il'gamov
%A T. F. Khalitova
%T Simulation of strong compression of a gas cavity in liquid
%J Matematičeskoe modelirovanie
%D 2008
%P 89-103
%V 20
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_11_a7/
%G ru
%F MM_2008_20_11_a7
A. A. Aganin; M. A. Il'gamov; T. F. Khalitova. Simulation of strong compression of a gas cavity in liquid. Matematičeskoe modelirovanie, Tome 20 (2008) no. 11, pp. 89-103. http://geodesic.mathdoc.fr/item/MM_2008_20_11_a7/

[1] D. F. Gaitan, L. A. Crum, “Observation of sonoluminescence from a single, stable cavitation bubble in a water/glycerine mixture”, 12th Intern. Symp. On Nonl. Acoustics, Elsevier, New York, 1990, 459–463

[2] R. P. Taleyarkhan, C. D. West, J. S. Cho, R. T.(jr) Lahey, R. I. Nigmatulin, R. C. Block, “Evidence for Nuclear Emissions During Acoustic Cavitation”, Science, 295 (2002), 1868–1873 | DOI

[3] R. P. Taleyarkhan, C. D. West, R. T. Lahey, Jr., R. I. Nigmatulin, R. C. Block, Y. Xu, “Nuclear emissions during self-nucleated acoustic cavitation”, Phys. Rev. Lett., 96 (2006), 034301 | DOI

[4] C. G. Camara, S. D. Hopkins, K. S. Suslick, S. J. Putterman, “Upper bound for neutron emission from sonoluminescing bubbles in deuterated acetone”, Phys. Rev. Lett., 98:6 (2007), 064301 | DOI

[5] S. J. Putterman, K. P. Weninger, “Sonoluminescence: How Bubbles Turn Sound into Light”, Annu. Rev. Fluid Mech., 32 (2000), 445–476 | DOI | Zbl

[6] W. C. Moss, D. B. Clarke, D. A. Young, “Calculated Pulse Widths and Spectra of a Single Sonoluminescencing bubble”, Science, 276 (1997), 1398–1401 | DOI

[7] R. I. Nigmatulin, I. Sh. Akhatov, A. S. Topolnikov, R. Kh. Bolotnova, N. K. Vakhitova, R. T. (Jr) Lahey, R. Taleyarkhan, “The Theory of Supercompression of Vapor Bubbles and Nano-Scale Thermonuclear Fusion”, Phys. Fluids, 17:10 (2005), 107105 | DOI

[8] R. I. Nigmatulin, “Nano-scale thermonuclear fusion in imploding vapor bubbles”, Nuclear Eng. and Design, 235 (2005), 1079–1091 | DOI

[9] A. M. Kraiko, “Gazodinamicheskoe obespechenie upravlyaemogo termoyadernogo sinteza”, IX Vserossiiskii s'ezd po teoreticheskoi i prikladnoi mekhanike, Annotatsii dokladov. t. 2, Izd-vo Nizhegorodskogo gosuniversiteta im. N. I. Lobachevskogo, Nizhnii Novgorod, 2006, 115–116

[10] R. I. Ilkaev, S. G. Garanin, “Issledovanie problem termoyadernogo sinteza na moschnykh lazernykh ustanovkakh”, Vestnik RAN, 76:6 (2006), 503–513

[11] K. G. Lebo, V. F. Tishkin, Issledovanie gidrodinamicheskoi neustoichivosti v zadachakh lazernogo termoyadernogo sinteza metodami matematicheskogo modelirovaniya, Fizmatlit, M., 2006, 304

[12] M. L. Calvisi, O. Lindau, J. R. Blake, A. J. Szeri, “Shape stability and violent collapse of microbubbles in acoustic traveling waves”, Phys. Fluids, 19 (2007), 047101 | DOI | Zbl

[13] K. E. Afanasiev, I. V. Grigorieva, “Numerical modelling of dynamics a three-dimensional vapour-gas bubbles”, Proceedings of the Second International Summer Scientific school, 2004, 181–190

[14] A. Prosperetti, “Viscous effects on perturbed spherical flows”, Quart. Appl. Math., 34 (1977), 339–352 | Zbl

[15] M. P. Brenner, D. Lohse, T. F. Dupont, “Bubble shape oscillations and the onset of sonoluminescense”, Phys. Rev. Lett., 75:5 (1995), 954–957 | DOI | MR

[16] H. Lin, B. D. Storey, A. J. Szeri, “Rayleigh–Taylor instability of violently collapsing bubbles”, Phys. Fluids, 14:8 (2002), 2925–2928 | DOI

[17] A. A. Aganin, T. S. Guseva, “Izmenenie malogo iskazheniya sfericheskoi formy gazovogo puzyrka pri ego silnom rasshirenii-szhatii”, PMTF, 2005, no. 4, 17–22 | MR

[18] R. I. Nigmatulin, A. A. Aganin, M. A. Ilgamov, D. Yu. Toporkov, “Iskazhenie sferichnosti parovogo puzyrka v deiterirovannom atsetone”, DAN, 408:6 (2006), 767–771

[19] Yu. A. Bondarenko, V. V. Bashurov, Yu. V. Yanilkin, “Matematicheskie modeli i chislennye metody dlya resheniya zadach nestatsionarnoi gazovoi dinamiki”, Obzor zarubezhnoi literatury, RFYaTs-VNIIEF, Sarov, 2003, 53

[20] M. Ida, “Investigation of transition frequencies of two acoustically coupled bubbles using a direct numerical simulation technique”, Physical Society of Japan, 73:11 (2004), 3026–3033 | DOI | Zbl

[21] M. Ida, “An improved unified solver for compressible and incompressible fluids involving free surfaces. II. Multi-time-step integration and applications”, Comput. Phys. Commun., 150 (2003), 300–323 | DOI | MR

[22] C. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR | Zbl

[23] C. C. Wu, P. H. Roberts, “Shock wave propagation in a sonoluminescencing gas bubble”, Phys. Rev. Lett., 70 (1993), 3424–3427 | DOI

[24] V. Q. Vuong, A. T. Szeri, “Sonoluminescence and diffusive transport”, Physics of Fluids, 8:9 (1996), 2354–2364 | DOI | Zbl

[25] A. A. Aganin, “Dynamics of a small bubble in a compressible fluid”, Int. J. Numer. Meth. Fluids, 33 (2000), 157–174 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[26] A. A. Aganin, M. A. Ilgamov, “Dinamika puzyrka gaza v tsentre sfericheskogo ob'ema zhidkosti”, Matem. modelirovanie, 13:1 (2001), 26–40 | MR | Zbl

[27] A. Harten, B. Engquist, S. Osher, S. R. Chakravarthy, “Uniformly high order accurate essentially nonoscillatory schemes III”, J. Comp. Phys., 71 (1987), 231–303 | DOI | MR | Zbl

[28] M. A. Ilgamov, Kolebaniya obolochek, soderzhaschii zhidkost i gaz, Nauka, M., 1969, 182 pp.

[29] V. P. Kolgan, “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uchen. zap. TsAGI, 3:6 (1972), 68–77

[30] B. Van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, Journal of Computational Physics, 32 (1979), 101–136 | DOI | MR

[31] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001, 608 pp. | MR | Zbl