Stochastic approach to numerical solution of Fokker--Planck equations
Matematičeskoe modelirovanie, Tome 20 (2008) no. 11, pp. 3-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered the generalization of a method of particles in cells for numerical modeling of plasma dynamics in view of influence of coulomb collisions, and also for the solution of the equations of convective transport of impurity in environments with complex structure of turbulent flows. The approach is based on the solution of the Fokker–Planck equation describing as a kinetic of collisional plasmas, so tasks of convective diffusion by replacement of the equation of diffusion type by equivalent system of the Langevin stochastic differential equations (SDE), which realize stochastic process of Markov type and are formally considered in this case as the equations of movement for modeling microparticles. It is established the connection between coefficients of the Fokker–Planck equation and Langevin equations, ensuring stochastic equivalence of these equations in result of which the function of distribution of realizations of stochastic process satisfies to the kinetic equation the Fokker–Planck. The algorithm of the numerical decision SDE is given. The concrete expressions for coefficients SDE, appropriate to the Landau kinetic equation for collisional plasma, to the kinetic equation in Lorentz approach and equation of turbulent diffusion are submitted. The role of collisions is established at acceleration of heavy ions in expanding plasma and during absorption of laser radiation by plasma of overcritical density.
@article{MM_2008_20_11_a0,
     author = {M. F. Ivanov and V. A. Gal'burt},
     title = {Stochastic approach to numerical solution of {Fokker--Planck} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--27},
     publisher = {mathdoc},
     volume = {20},
     number = {11},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_11_a0/}
}
TY  - JOUR
AU  - M. F. Ivanov
AU  - V. A. Gal'burt
TI  - Stochastic approach to numerical solution of Fokker--Planck equations
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 3
EP  - 27
VL  - 20
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_11_a0/
LA  - ru
ID  - MM_2008_20_11_a0
ER  - 
%0 Journal Article
%A M. F. Ivanov
%A V. A. Gal'burt
%T Stochastic approach to numerical solution of Fokker--Planck equations
%J Matematičeskoe modelirovanie
%D 2008
%P 3-27
%V 20
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_11_a0/
%G ru
%F MM_2008_20_11_a0
M. F. Ivanov; V. A. Gal'burt. Stochastic approach to numerical solution of Fokker--Planck equations. Matematičeskoe modelirovanie, Tome 20 (2008) no. 11, pp. 3-27. http://geodesic.mathdoc.fr/item/MM_2008_20_11_a0/

[1] Lifshits E. M., Pitaevskii L. P., Teoreticheskaya fizika. T. 10. Fizicheskaya kinetika, Nauka, M., 1979 | MR | Zbl

[2] Silin V. P., Vvedenie v kineticheskuyu teoriyu gazov, Nauka, M., 1971

[3] Trubnikov B. A., “Stolknoveniya chastits v polnostyu ionizirovannoi plazme”, Voprosy teorii plazmy, vyp. 1, ed. M. A. Leontovich (red.), Gosatomizdat, M, 1963

[4] M. F. Ivanov, Shvets V. F., “Metod stokhasticheskikh differentsialnykh uravnenii dlya rascheta kinetiki”, Zh. vych. mat. i matem. fiziki, 20:3 (1980), 682–690 | MR

[5] Dnestrovskii Yu. N., Kostomarov D. P., Matematicheskoe modelirovanie plazmy, Nauka, M., 1982

[6] Sigov Yu. S., Vychislitelnyi eksperiment: most mezhdu proshlym i buduschim fiziki plazmy, Fizmatlit, M., 2001

[7] Ivanov M. F., Keidzhyan M. G., “Modelirovanie kineticheskikh protsessov v lazernoi plazme s uchetom kulonovskikh stolknovenii metodom stokhasticheskoi dinamiki”, Fizika plazmy, 25:5 (1999), 480–487

[8] Pugachev V. S., Sinitsyn I. N., Teoriya stokhasticheskikh sistem, Logos, M., 2003

[9] Tikhonov V. I., Mironov M. A., Markovskie protsessy, Sov. radio, M., 1997 | MR

[10] Martensen R. E., “Mathematical problems of modeling stochastic nonlinear dynamic systems”, J. Statist. Phys., 1:2 (1969), 271–296 | DOI

[11] Stratonovich P. L., Izbrannye voprosy teorii fluktuatsii v radiotekhnike, Sov. radio, M., 1961 | Zbl

[12] Van Kampen N. G., Stokhasticheskie protsessy v fizike i khimii, Vysshaya shkola, M., 1990 | Zbl

[13] Nikitin N. N., Pervachev S. V., Razevich V. D., “O reshenii na TsVM stokhasticheskikh differentsialnykh uravnenii sledyaschikh sistem”, Avtomatika i telemekhanika, 1975, no. 4, 133–147 | MR

[14] Bedsel Ch., Longdon A., Fizika plazmy i chislennoe modelirovanie, Energoatomizdat, M., 1989

[15] Chandrasekar S., Stokhasticheskie problemy v fizike i astronomii, IL, M., 1947

[16] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969 | MR | Zbl

[17] Ivanov M. F., Shvets V. F., “O chislennom reshenii stokhasticheskikh differentsialnykh uravnenii dlya modelirovaniya stolknovenii v plazme”, Chislennye metody MSS, 10:1 (1979), 64–70 | MR

[18] Decoste R., Ripin B. H., “High-energy ion expansion in laser-plasma interaction”, Phys. Rev. Lett., 40:1 (1978), 34–37 | DOI

[19] Winder M., Alexeff J., Jines W. D., “Plasma expansion into a vacuum”, Phys. Fluids, 14:4 (1971), 795–796 | DOI

[20] Mulser P., “Electrostatic fields and ion separation in expanding laser produced plasmas”, Plasma Phys., 13:11 (1971), 1007–1012 | DOI

[21] Gurevich A. V., Pariiskaya L. V., Pitaevskii L. P., “Avtomodelnoe dvizhenie razrezhennoi plazmy”, ZhETF, 49:2 (1965), 647–654

[22] Gurevich A. V., Pariiskaya L. V., Pitaevskii L. P., “Uskorenie ionov pri rasshirenii razrezhennoi plazmy”, ZhETF, 63:2 (1972), 516–531

[23] Anisimov S. I., Medvedev Yu. V., “Evolyutsiya razryva plotnosti v kinetike razrezhennoi plazmy”, ZhETF, 76:1 (1979), 121–129

[24] Gurevich A. V., Anisimov S. I., Sagdeev R. Z., Medvedev Yu. V., Soviet Science Rev. A, 13:1 (1989), 30

[25] Bochkarev S. G., Bychenkov V. Yu., Tikhonchuk I. T., “Issledovanie uskoreniya ionov pri razlete lazernoi plazmy na osnove gibridnoi modeli Boltsmana–Vlasova–Puassona”, Fizika plazmy, 32:3 (2006), 230–247

[26] Anisimov S. I., Ivanov M. F., Medvedev Yu. V., Shvets V. F., “Uskorenie primesnykh ionov pri rasshirenii plazmy v vakuume”, Fizika plazmy, 8:5 (1982), 1045–1048

[27] Kroll N., Traivelspils A., Osnovy fiziki plazmy, Mir, M., 1975

[28] Cadjan M. G., Ivanov M. F., “Stochastic Approach to the Laser Plasma Kinetic with Coulomb Collisions”, Phys. Letters A, 236 (1997), 227–231 | DOI

[29] Yang T.-Y. B., Kruer W. L., Mure R. M., Longdon A. V., “Absorption of laser light in overdense plasmas by sheath inverse bremsstralung”, Phys. Plasmas, 2 (1995), 3146–3154 | DOI

[30] Galburt V. A., Ivanov M. F., Mineev V. N., Funtikov A. I., “Chislennoe modelirovanie raspredeleniya radiatsionnykh osadkov na mestnosti”, Izvestiya RAN. Energetika, 2004, no. 5, 110–116

[31] Izrael Yu. A., Artemov E. M., Nazarov I. M. i dr., “Lokalnyi radioaktivnyi vybros kak rezultat avarii na Tomsk-7 Radiokhimicheskom kombinate”, Meteorologiya i gidrologiya, 1993, no. 6, 5–8

[32] Belotserkovskii O. M., Davydov Yu. M., Metod krupnykh chastits v gazovoi dinamike, Nauka, M., 1982, 392 pp.

[33] Sedov L. I., Metody podobiya i razmernosti v mekhanike, Nauka, M., 1977, 438 pp. | MR

[34] S. Calvert, H. M. Englund. (eds.), Handbook of air pollution technology, N.Y., 1984

[35] Berezin Yu. A., Fedoruk M. P., Modelirovanie nestatsionarnykh plazmennykh protsessov, Nauka, Novosibirsk, 1993 | MR | Zbl