ENO and WENO versions of Bott's scheme for advection equation
Matematičeskoe modelirovanie, Tome 20 (2008) no. 10, pp. 86-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consecutive generalization of the Bott's scheme for advection equation based on ENO and WENO techniques is suggested. Modified scheme inherits all good properties of original scheme (accuracy and positiveness) and prove to be non-oscillatory. Two variants of 3- and 5-points stencil for flux approximation are considered. WENO versions of these variants have 5-th and 9-th order of accuracy respectively for smooth solutions under constant advection velocity condition. It is shown that the use of coordinate splitting for multi-dimensional cases does not make worse order of accuracy comparing with one-dimensional one.
@article{MM_2008_20_10_a7,
     author = {A. A. Ignatyev},
     title = {ENO and {WENO} versions of {Bott's} scheme for advection equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {86--98},
     publisher = {mathdoc},
     volume = {20},
     number = {10},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_10_a7/}
}
TY  - JOUR
AU  - A. A. Ignatyev
TI  - ENO and WENO versions of Bott's scheme for advection equation
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 86
EP  - 98
VL  - 20
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_10_a7/
LA  - ru
ID  - MM_2008_20_10_a7
ER  - 
%0 Journal Article
%A A. A. Ignatyev
%T ENO and WENO versions of Bott's scheme for advection equation
%J Matematičeskoe modelirovanie
%D 2008
%P 86-98
%V 20
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_10_a7/
%G ru
%F MM_2008_20_10_a7
A. A. Ignatyev. ENO and WENO versions of Bott's scheme for advection equation. Matematičeskoe modelirovanie, Tome 20 (2008) no. 10, pp. 86-98. http://geodesic.mathdoc.fr/item/MM_2008_20_10_a7/

[1] A. Bott, “A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes”, Monthly Weather Review, 117 (1989), 1006–1015 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[2] A. Bott, “Reply”, Monthly Weather Review, 117 (1989), 2633–2636 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] A. Bott, “Monotone flux limitation in the area-preserving flux-form advection algorithm”, Monthly Weather Review, 120 (1992), 2592–2602 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[4] A. Chlond, “Locally modified version of Bott's advection scheme”, Monthly Weather Review, 122 (1994), 111–125 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[5] A. Harten, B. Engquist, S. Osher, S. Chakravarthy, “Uniformly high order essentially non-oscillatory schemes, III”, Journal of Computational Physics, 71 (1987), 231–303 | DOI | MR | Zbl

[6] X.-D Liu, S. Osher, T. Chan, “Weighted essentially nonoscillatory schemes”, Journal of Computational Physics, 115 (1994), 200–212 | DOI | MR | Zbl

[7] G. Jiang, C.-W. Shu, “Efficient implementation of weighted ENO schemes”, Journal of Computational Physics, 126 (1996), 202–228 | DOI | MR | Zbl

[8] S. K. Godunov, V. S. Ryabenkii, Raznostnye skhemy, Nauka, M., 1973, 400 pp. | Zbl