ENO and WENO versions of Bott's scheme for advection equation
Matematičeskoe modelirovanie, Tome 20 (2008) no. 10, pp. 86-98

Voir la notice de l'article provenant de la source Math-Net.Ru

Consecutive generalization of the Bott's scheme for advection equation based on ENO and WENO techniques is suggested. Modified scheme inherits all good properties of original scheme (accuracy and positiveness) and prove to be non-oscillatory. Two variants of 3- and 5-points stencil for flux approximation are considered. WENO versions of these variants have 5-th and 9-th order of accuracy respectively for smooth solutions under constant advection velocity condition. It is shown that the use of coordinate splitting for multi-dimensional cases does not make worse order of accuracy comparing with one-dimensional one.
@article{MM_2008_20_10_a7,
     author = {A. A. Ignatyev},
     title = {ENO and {WENO} versions of {Bott's} scheme for advection equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {86--98},
     publisher = {mathdoc},
     volume = {20},
     number = {10},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_10_a7/}
}
TY  - JOUR
AU  - A. A. Ignatyev
TI  - ENO and WENO versions of Bott's scheme for advection equation
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 86
EP  - 98
VL  - 20
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_10_a7/
LA  - ru
ID  - MM_2008_20_10_a7
ER  - 
%0 Journal Article
%A A. A. Ignatyev
%T ENO and WENO versions of Bott's scheme for advection equation
%J Matematičeskoe modelirovanie
%D 2008
%P 86-98
%V 20
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_10_a7/
%G ru
%F MM_2008_20_10_a7
A. A. Ignatyev. ENO and WENO versions of Bott's scheme for advection equation. Matematičeskoe modelirovanie, Tome 20 (2008) no. 10, pp. 86-98. http://geodesic.mathdoc.fr/item/MM_2008_20_10_a7/