The numerical modelling of the atmosphere motion with meshfree methods
Matematičeskoe modelirovanie, Tome 20 (2008) no. 10, pp. 75-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

Neglecting turbulent motion of the atmosphere we consider the Navier–Stokes equations to calculate the wind velocities. We use a Lagrangian discrete vortex method to compute main characteristics of the flow. The core of the vortex method is to find the solution to the Poisson equation. For solving the Poisson equation with Dirichlet and Neumann boundary conditions the Element Free Galerkin (EFG) and the Finite Pointset (FP) methods, as well as a modification of the latter, are examined. It is shown that the EFG method increases the computational speed in comparison with the FP method. It is determined that the grave disadvantage of the FP method is a low-rate convergence while the computational complexity of each iteration is reasonable. The use of the modified FP method shows that the elapsed time is comparable with that of the EFG method although as the problem size increases the advantage of the FP method is not so obvious.
@article{MM_2008_20_10_a6,
     author = {I. V. Shevchenko},
     title = {The numerical modelling of the atmosphere motion with meshfree methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--85},
     publisher = {mathdoc},
     volume = {20},
     number = {10},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_10_a6/}
}
TY  - JOUR
AU  - I. V. Shevchenko
TI  - The numerical modelling of the atmosphere motion with meshfree methods
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 75
EP  - 85
VL  - 20
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_10_a6/
LA  - ru
ID  - MM_2008_20_10_a6
ER  - 
%0 Journal Article
%A I. V. Shevchenko
%T The numerical modelling of the atmosphere motion with meshfree methods
%J Matematičeskoe modelirovanie
%D 2008
%P 75-85
%V 20
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_10_a6/
%G ru
%F MM_2008_20_10_a6
I. V. Shevchenko. The numerical modelling of the atmosphere motion with meshfree methods. Matematičeskoe modelirovanie, Tome 20 (2008) no. 10, pp. 75-85. http://geodesic.mathdoc.fr/item/MM_2008_20_10_a6/

[1] A. M. Krivtsov, I. B. Volkovets, P. V. Tkachev, V. A. Tsaplin, Primenenie metoda dinamiki chastits dlya opisaniya vysokoskorostnogo razrusheniya tverdykh tel, Trudy vserossiiskoi konferentsii “Matematika, Mekhanika i Informatika 2002”, 2002 | Zbl

[2] A. M. Krivtsov, N. V. Krivtsova, “Metod chastits i ego ispolzovanie v mekhanike deformiruemogo tverdogo tela”, Dalnevostochnyi matematicheskii zhurnal DVO RAN, 3:2 (2002), 254–276

[3] L. Rosenhead, “The formation of vortices from a surface of discontinuity”, Proc. Roy. Soc. London A, 134 (1931), 170–192 | DOI

[4] R. A. Gingold, J. J. Monaghan, “Smoothed particle hydrodynamics: theory and application to nonspherical stars”, Mon. Not. R. Astr. Soc., 181 (1977), 375–389 | Zbl

[5] T. Belytschko, Y. Lu, L. Gu, “Element free Galerkin methods”, International Journal for Numerical Methods in Engineering, 37 (1994), 229–256 | DOI | MR | Zbl

[6] S. N. Atluri, T-L. Zhu, “A new meshless local Petrov–Galerkin (MLPG) approach”, Modelling and Simulation Based Engineering, V. 1, eds. Atluri S. N., O'Donoghue P. E., Tech Science Press, Palmdale, CA, 1998, 2–10

[7] J. Carrier, L. Greengard, V. Rokhlin, “A fast adaptive multipole algorithm for particle simulations”, SIAM J. Sci. Stat. Comput., 9 (1988), 669–686 | DOI | MR | Zbl

[8] L. L. van Dommelen, E. A. Rundensteiner, “Fast, adaptive summation of point forces in the twodimensional poisson equation”, J. Comput. Phys., 83 (1989), 126–147 | DOI | Zbl

[9] A. S. Almgren, T. Buttke, P. Colella, “A fast adaptive vortex method in three dimensions”, J. Comput. Phys., 113 (1994), 177–200 | DOI | MR | Zbl

[10] S. M. Bakhrakh, S. G. Volkov, S. E. Kuratov, A. O. Naumov, O. V. Olkhov, Ispolzovanie algoritma “vikhri-v-yacheikakh” pri chislennom modelirovanii gidrodinamicheskoi neustoichivosti, Trudy Zababakhinskikh nauchnykh chtenii, Elektronnaya publikatsiya , 2003 http://www.vniitf.ru/rig/konfer/7zst/7zst.html | Zbl

[11] Yu. N. Grigorev, V. A. Vshivkov, Chislennye metody “chastitsy-v-yacheikakh”, Nauka, Novosibirsk, 2000, 185 pp. | MR

[12] L. Quartapelle, Numerical solution of the incompressible Navier–Stokes equations, International Series of Numerical Mathematics, 113, Birkhäuser Verlag, Boston, 1993 | MR | Zbl

[13] G.-H. Cottet, “Particle-grid domain decomposition methods for the Navier–Stokes equations in exterior domains”, Vortex dynamics and vortex methods, Lectures in Applied Mathematics, 28, 1991, 103–117 | MR | Zbl

[14] S. Huberson, A. Joll'es, W. Shen, “Numerical simulation of incompressible viscous flows by means of particles method”, Lectures in Applied Mathematics, 28, 1991, 369–384 | MR | Zbl

[15] J.-L. Guermond, S. Huberson, W.-Z. Shen, “Simulation of 2D external viscous flows by means of a domain decomposition method”, J. Comput. Phys., 108 (1993), 343–352 | DOI | MR | Zbl

[16] M.-H. Chou, “Simulation of slightly viscous external flow by a grid-particle domain decomposition method”, Computers Fluids, 24 (1995), 333–347 | DOI | Zbl

[17] A. J. Chorin, “Numerical methods for use in combustion modeling”, Computing methods in applied sciences and engineering, eds. Glowinski R. and Lions J. L., North Holland, Amsterdam, 1980, 229–236 | MR | Zbl

[18] A. Leonard, “Vortex methods for flow simulation”, J. Comput. Phys., 37 (1980), 289–335 | DOI | MR | Zbl

[19] P. A. Raviart, “An Analysis of Particle methods”, Numerical Methods in Fluid Dynamics, Lecture Notes in Math., 1127, 1985, 243–324 | MR | Zbl

[20] V. N. Golubkin, G. B. Sizykh, “Some general properties of plane-parallel viscous flows”, Izv. Akad. Nauk SSSR. Mekh. Zhidk. i Gaza, 1987, no. 3, 176–178

[21] C. Bëorgers, C. Peskin, “A Lagrangian fractional step method for the incompressible Navier–Stokes equations on a periodic domain”, J. Comput. Phys., 70 (1987), 397–438 | DOI | MR

[22] D. Fishelov, “A new vortex scheme for viscous flows”, J. Comput. Phys., 86 (1990), 211–224 | DOI | MR | Zbl

[23] M. D. Rees, K. W. Morton, “Moving point, particle, and free-Lagrange methods for convection-diffusion equations”, SIAM J. Sci. Stat. Comput., 12 (1991), 547–572 | DOI | MR | Zbl

[24] G. Russo, “A deterministic vortex method for the Navier–Stokes equations”, J. Comput. Phys., 108 (1993), 84–94 | DOI | MR | Zbl

[25] L. D. Landau, E. M. Lifshits, Gidrodinamika, Nauka, M., 1988, 730 pp.

[26] M. E. Berlyand, Prognoz i regulirovanie zagryazneniya atmosfery, Gidrometeorologicheskoe izdatelstvo, 1985, 272 pp.

[27] F. Kharlou, “Chislennyi metod chastits v yacheikakh dlya zadach gidrodinamiki”, Vychislitelnye metody v gidrodinamike, Mir, M., 1967, 316–342

[28] J. Kuhnert, S. Tiwari, “Grid free method for solving the Poisson equation”, Wavelet Analysis and Applications, New Age International (P), Ltd. Publishers, 2004, 151–166

[29] J. Gosz, W. K. Liu, “Admissible approximations for essential boundary conditions in the reproducing kernel particle method”, Computational Mechanics, 19 (1996), 120–135 | DOI | Zbl

[30] F. C. Günther, W. K. Liu, “Implementation of boundary conditions for meshless methods”, Computer Methods in Applied Mechanics and Engineering, 163 (1998), 205–230 | DOI | MR | Zbl

[31] Y. Y. Lu, T. Belytschko, M. Tabbara, “Element-free Galerkin method for wave propagation and dynamic fracture”, Comp. Methods in Appl. Mechanics and Engineering, 126 (1995), 131–153 | DOI | MR | Zbl

[32] Y. Y. Lu, T. Belytschko, L. Gu, “A new implementation of the element free Garlerkin method”, Computer Methods in Applied Mechanics and Engineering, 113 (1994), 397–414 | DOI | MR | Zbl

[33] T. Zhu, S. N. Atluri, “Modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method”, Computational Mechanics, 21 (1998), 211–222 | DOI | MR | Zbl

[34] Y. X. Mukherjee, S. Mukherjee, “On boundary conditions in the element free Galerkin method”, Computational Mechanics, 19 (1997), 267–270 | DOI | MR

[35] Y. Krongauz, T. Belytschko, “Enforcement of essential boundary conditions in meshless approximations using finite elements”, Computer Methods in Applied Mechanics and Engineering, 131 (1996), 133–145 | DOI | MR | Zbl

[36] D. Hegen, “Element-free Galerkin methods in combination with finite element approaches”, Computer Methods in Applied Mechanics and Engineering, 135 (1996), 143–166 | DOI | Zbl

[37] S. Tiwari, J. Kuhnert, “A numerical scheme for solving incompressible and low mach number flows by Finite Pointset method”, Meshfree Methods for Partial Diff. Equations, II, Lecture Notes in Comp. Science and Engineering, 43, eds. M. Griebel, M. A. Schweitzer, Springer, Berlin, 2005, 191–206 | MR | Zbl

[38] D. Hietel, M. Junk, J. Kuhnert, S. Tiwari, “Meshless methods for Conservation Laws”, Analysis and Numerical Methods for Conservation Laws, ed. G. Warnecke, Springer, Berlin, 2005, 339–362 | MR | Zbl

[39] S. Tiwari, S. Antonov, D. Hietel, J. Kuhnert, R. Wegener, “A Meshfree Method for Simulations of Interactions between Fluids and Flexible Structures”, Meshfree Methods for Partial Diff. Equations, III, Lecture Notes in Computational Science and Engineering, 57, eds. M. Griebel, M. A. Schweitzer, Springer, 2006