Calculation of free mixing layer on the base of large-eddy simulation
Matematičeskoe modelirovanie, Tome 19 (2007) no. 9, pp. 114-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

Large-eddy simulation of turbulent flow in the free mixing layer is considered on the base of some sub-grid scale models (Smagorinsky model, RNG-model, dynamics model and one-parameter differential model). The accuracy and effectiveness of different sub-grid scale models are compared. The ways of formulation of boundary conditions on the inlet boundary and construction of computational grid are discussed. Computational results of averaged and fluctuating flow properties including moments of high order are compared with the experimental data and available computational data.
@article{MM_2007_19_9_a8,
     author = {K. N. Volkov},
     title = {Calculation of free mixing layer on the base of large-eddy simulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {114--128},
     publisher = {mathdoc},
     volume = {19},
     number = {9},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_9_a8/}
}
TY  - JOUR
AU  - K. N. Volkov
TI  - Calculation of free mixing layer on the base of large-eddy simulation
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 114
EP  - 128
VL  - 19
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_9_a8/
LA  - ru
ID  - MM_2007_19_9_a8
ER  - 
%0 Journal Article
%A K. N. Volkov
%T Calculation of free mixing layer on the base of large-eddy simulation
%J Matematičeskoe modelirovanie
%D 2007
%P 114-128
%V 19
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_9_a8/
%G ru
%F MM_2007_19_9_a8
K. N. Volkov. Calculation of free mixing layer on the base of large-eddy simulation. Matematičeskoe modelirovanie, Tome 19 (2007) no. 9, pp. 114-128. http://geodesic.mathdoc.fr/item/MM_2007_19_9_a8/

[1] Abramovich G. N., Krashenninikov S. Yu., Sekundov A. N., Smirnova I. I., Turbulentnoe smeshenie gazovykh strui, Nauka, M., 1974

[2] Brown G. L., Roshko A., “On density effects and large structures in turbulent mixing layers”, Journal of Fluid Mechanics, 64:4 (1974), 775–816 | DOI

[3] Bernal L. P., Roshko A., “Streamwise vortex structure in plane mixing layers”, Journal of Fluid Mechanics, 170 (1986), 499–525 | DOI

[4] Leboeuf R. L., Mehta R. D., “On using Taylor's hypothesis for three-dimensional mixing layers”, Physics of Fluids, 7 (1995), 1516–1518 | DOI

[5] Bauer W., Haag O., Hennecke D. K., “Accuracy and robustness of nonlinear eddy viscosity models”, International Journal of Heat and Fluid Flow, 21 (2000), 312–319 | DOI

[6] Li Q., Fu S., “Numerical simulation of high-speed planar mixing layer”, Computers and Fluids, 32 (2003), 1357–1377 | DOI | Zbl

[7] Chung Y. M., Sung H. J., “Comparative study of inflow conditions for spatially evolving simulation”, AIAA Journal, 35:2 (1997), 269–274 | DOI | Zbl

[8] Li N., Balaras E., Piomelli U., “Inflow conditions for large-eddy simulations of mixing layers”, Physics of Fluids, 12:4 (2000), 935–938 | DOI | Zbl

[9] Tenaud C., Pellerin S., Dulieu A., Ta Phuoc L., “Large eddy simulations of a spatially developing incompressible 3D mixing layer using the $V$-omega formulation”, Computers and Fluids, 34 (2005), 67–96 | DOI | Zbl

[10] Sandham N. D., Reynolds W. C., “Three-dimensional simulations of large eddies in the compressible mixing layer”, Journal of Fluid Mechanics, 224 (1991), 133–158 | DOI | Zbl

[11] Rogers M. M., Moser R. D., “Direct simulation of a self-similar turbulent mixing layer”, Physics of Fluids, 6:2 (1994), 903–923 | DOI | Zbl

[12] Vreman A.W., Sandham N.D., Luo K.H., “Compressible mixing layer growth rate and turbulence characteristics”, Journal of Fluid Mechanics, 320 (1996), 235–258 | DOI | Zbl

[13] Ladeinde F., Liu W., O'Brien E. E., “Turbulence in compressible mixing layers”, Journal of Fluids Engineering, 120 (1998), 48–53 | DOI

[14] Lele S. K., “Direct numerical simulation of compressible free shear flows”, AIAA, 1989, 0374

[15] Wilson R. V., Demuren A. O., “Two-dimensional spatially developing mixing layers”, Numerical Heat Transfer, 29 (1996), 485–509 | DOI

[16] Stanley S., Sarkar S., “Simulations of spatially developing two-dimensional shear layers and jets”, Theoretical and Computational Fluid Dynamics, 9 (1997), 121–147 | DOI | Zbl

[17] Papamoschou D., Roshko A., “The compressible turbulent shear layer: an experimental study”, Journal of Fluid Mechanics, 197 (1988), 453–477 | DOI

[18] Elliott G. S., Samimy M., “Compressibility effects in free shear layers”, Physics of Fluids, 2:7 (1990), 1231–1240 | DOI

[19] Goebel S. G., Dutton J. C., “Experimental study of compressible turbulent mixing layers”, AIAA Journal, 29 (1991), 538–546 | DOI

[20] Knaepen B., Debliquy O., Carati D., “DNS and LES of shear-free mixing layer”, Annual Research Briefs of Center for Turbulence Research, 2003, 307–318

[21] Youngs D. L., “Three-dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability”, Physics of Fluids, 3:5 (1991), 1312–1320 | DOI

[22] Linden P. F., Redondo J. M., Youngs D. L., “Molecular mixing in Rayleigh–Taylor instability”, Journal of Fluid Mechanics, 265 (1994), 97–124 | DOI

[23] Compte P., Silvestrini J. H., Begou P., “Streamwise vortices in large-eddy simulations of mixing layers”, European Journal of Mechanics B/Fluids, 17:4 (1998), 615–637 | DOI

[24] Smagorinsky J., “General circulation experiments with the primitive equations”, Journal of Basic Experiment, 91 (1963), 99–165

[25] Horiuti K., “Backward scatter of subgrid-scale energy in wall-bounded and free shear turbulence”, Journal of Physical Society of Japan, 66:1 (1997), 91–107 | DOI

[26] Germano M., Piomelli U., Moin P., Cabot W. H., “A dynamic subgrid scale eddy viscosity model”, Physics of Fluids, 3:7 (1991), 1760–1765 | DOI | Zbl

[27] Volkov K. N., “Primenenie metoda kontrolnogo ob'ema dlya resheniya zadach mekhaniki zhidkosti i gaza na nestrukturirovannykh setkakh”, Vychislitelnye metody i programmirovanie, 6:1 (2005), 43–60

[28] Chakravarthy S. R., Osher S., “A new class of high-accuracy TVD schemes for hyperbolic conservation laws”, AIAA, 1985, 0363