Modelling of sound propagation through non-uniform flows of turbulent jets
Matematičeskoe modelirovanie, Tome 19 (2007) no. 8, pp. 66-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a new hybrid approach for solving a linear sound propagation problem for application to subsonic jet mixing noise. The linearised Euler equations in the frequency domain are solved by using a vector Green's function technique to obtain the far-field noise prediction. The Green's function is obtained numerically by solving an adjoint linearised problem in the jet near-field using appropriate "non-reflecting" boundary conditions. The boundary value problem in the frequency domain is solved with a finite-difference method and an explicit pseudo-time-stepping scheme. It is shown that the numerical artifacts in the solution due to the shear layer hydrodynamic instability can be suppressed by using a dual-scale pseudo-time-stepping scheme. Two semi-empirical acoustic source models are considered and sound prediction results for a benchmark round jet problem are presented.
@article{MM_2007_19_8_a7,
     author = {S. A. Karabasov},
     title = {Modelling of sound propagation through non-uniform flows of turbulent jets},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {66--74},
     publisher = {mathdoc},
     volume = {19},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_8_a7/}
}
TY  - JOUR
AU  - S. A. Karabasov
TI  - Modelling of sound propagation through non-uniform flows of turbulent jets
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 66
EP  - 74
VL  - 19
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_8_a7/
LA  - ru
ID  - MM_2007_19_8_a7
ER  - 
%0 Journal Article
%A S. A. Karabasov
%T Modelling of sound propagation through non-uniform flows of turbulent jets
%J Matematičeskoe modelirovanie
%D 2007
%P 66-74
%V 19
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_8_a7/
%G ru
%F MM_2007_19_8_a7
S. A. Karabasov. Modelling of sound propagation through non-uniform flows of turbulent jets. Matematičeskoe modelirovanie, Tome 19 (2007) no. 8, pp. 66-74. http://geodesic.mathdoc.fr/item/MM_2007_19_8_a7/

[1] Goldstein M. E., “A generalized acoustic analogy”, J. Fluid Mech., 488 (2003), 315–383 | DOI | MR

[2] Dowling A. P, Ffowcs Williams J. E., Goldstein M. E., “Sound production in a moving stream”, Phil. Trans. Roy. Soc., 288 (1978), 321–349 | DOI | Zbl

[3] Tam C. K. W., Auriault L., “Mean flow refraction effects on sound radiation from localized sources in a jet”, J. Fluid Mech., 370 (1998), 149–174 | DOI | MR | Zbl

[4] Cervino L. I., Bewley T. R, Freund J. B., Lele S. K., Perturbation and adjoint analysis of flow-acoustic interactions in an unsteady 2D jet, Center for Turbulence Research Proc. of the Summer Program, 2002

[5] Goldstein M. E., Leib S. J., “The role of instability waves in predicting jet noise”, J. Fluid Mech., 525 (2005), 37–72 | DOI | MR | Zbl

[6] Dowling A. P., Hynes T. P., “Sound generation by turbulence”, European J. Mech. B, 23 (2004), 491–500 | DOI | MR | Zbl

[7] Agarwal A., Morris P. J., Mani R., “The Calculation of Sound Propagation in Nonuniform Flows: Suppression of Instability Waves”, AIAA, 42:1 (2004), 80–88 | DOI

[8] Karabasov S. A., Hynes T. P., “Adjoint Linearised Euler Solver in the Frequency Domain for Jet Noise Modelling”, AIAA, 2006, 2673, 12-th AIAA/CEAS Aeroacoustics Conference, Cambridge, Massachusetts, 8–10 May 2006

[9] Thompson K. W., “Time dependent boundary conditions for hyperbolic systems, II”, J. of Computational Physics, 89 (1990), 439–461 | DOI | MR | Zbl

[10] Samarskii A. A., Vvedenie v chislennye metody, Nauka, M., 1987 | MR

[11] Denton J. D., “The effects of lean and sweep on transonic fan performance – a computational study”, Task Quarterly, 6:1 (2002), 7–23

[12] Wu X., Tristanto I., Page G., McGuirk J., “Influence of Nozzle Modeling in LES of Turbulent Free Jets”, AIAA, 2005, 2883, 11-th AIAA/CEAS Aeroacoustic Conference, 23–25 May 2005, Monterey, California

[13] Lehoucq R. B., Sorensen D. C., Yang C., ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998 | MR

[14] Freund J. B., “Noise sources in a Low-Reynolds-number turbulent jet at Mach 0.9”, J. Fluid Mech., 438 (2001), 277–305 | DOI | Zbl

[15] Bogey C., Bailly C., Juve D., “Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible LES”, Theoret. Comput. Fluid Dynamics, 16:4 (2003), 273–297 | DOI | Zbl

[16] Tam C. K. W., Auriault L., “Jet Mixing Noise from Fine-Scale Turbulence”, AIAA, 37:2 (1999), 145–153 | DOI

[17] Morris P. J., Farassat F., “Acoustic Analogy and Alternative Theories for Jet Noise Prediction”, AIAA, 40:4 (2002), 671–680 | DOI

[18] Afsar M. Z., Dowling A. P., Karabasov S. A., “Comparison of Jet Noise Models”, AIAA, 2006, 2593, 12-th AIAA/CEAS Aeroacoustics Conference, Cambridge, Massachusetts, 8–10 May 2006

[19] Stromberg J. L., McLaughlin D. K., Troutt T. R., “Flow-field and acoustic properties of a Mach number 0.9 jet at a low Reynolds number”, J. Sound Vibration, 72 (1980), 159–176 | DOI

[20] Durbin P. A., “High frequency Green functions for aerodynamic noise in moving media. Part 2. Noise from a spreading jet”, J. Sound and Vibration, 91 (1983), 527–538 | DOI | Zbl