High accuracy scheme for solving nonlinear aeroacoustics problems on unstructured meshes
Matematičeskoe modelirovanie, Tome 19 (2007) no. 7, pp. 56-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper represents a multi-parameter family of higher accuracy (up to the 6th order) schemes for solving 1D linear transport equation. The schemes are constructed on the base of central-difference approximation of space derivatives with adding the upwinding dissipation and the linear Runge-Kutta method of arbitrarily high order of accuracy for the time integration. A detailed analysis of computational errors and an example of test computation are given.
@article{MM_2007_19_7_a4,
     author = {I. V. Abalakin and T. K. Kozubskaya},
     title = {High accuracy scheme for solving nonlinear aeroacoustics problems on unstructured meshes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {56--66},
     publisher = {mathdoc},
     volume = {19},
     number = {7},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2007_19_7_a4/}
}
TY  - JOUR
AU  - I. V. Abalakin
AU  - T. K. Kozubskaya
TI  - High accuracy scheme for solving nonlinear aeroacoustics problems on unstructured meshes
JO  - Matematičeskoe modelirovanie
PY  - 2007
SP  - 56
EP  - 66
VL  - 19
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2007_19_7_a4/
LA  - ru
ID  - MM_2007_19_7_a4
ER  - 
%0 Journal Article
%A I. V. Abalakin
%A T. K. Kozubskaya
%T High accuracy scheme for solving nonlinear aeroacoustics problems on unstructured meshes
%J Matematičeskoe modelirovanie
%D 2007
%P 56-66
%V 19
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2007_19_7_a4/
%G ru
%F MM_2007_19_7_a4
I. V. Abalakin; T. K. Kozubskaya. High accuracy scheme for solving nonlinear aeroacoustics problems on unstructured meshes. Matematičeskoe modelirovanie, Tome 19 (2007) no. 7, pp. 56-66. http://geodesic.mathdoc.fr/item/MM_2007_19_7_a4/

[1] C. K. W. Tam, J. C. Webb, “Dispersion-relation-preserving finite difference schemes for computational aeroacoustics”, J. Comput. Phys., 107 (1993), 262 | DOI | MR | Zbl

[2] C. Bogey, C. Bailly, “A family of low dispersive and low dissipative explicit schemes for flow and noise computations”, J. Comput. Phys., 194 (2004), 194–214 | DOI | Zbl

[3] D. Gottlieb, E. Turkel, “Dissipative two-four methods for time-dependent problems”, Math. Comput., 30:136 (1976), 703–723 | DOI | MR | Zbl

[4] R. Hixon, E. Turkel, “Compact implicit MacCormack-type schemes with high accuracy.”, J. Comput. Phys., 158:1 (2000), 51–70 | DOI | MR | Zbl

[5] A. I. Tolstykh, Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR

[6] R. Hixon, “Prefactored small-stencil compact schemes”, J. Comput. Phys., 165:2 (2000), 522 | DOI | MR | Zbl

[7] J. A. Ekaterinaris, “Implicit, High-Resolution, Compact Schemes for Gas Dynamics and Aeroacoustics”, J. Comput. Phys., 156:2 (1999), 272–299 | DOI | MR | Zbl

[8] C. Shu, S. Osher, “Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, II”, J. Comput. Phys., 83:1 (1989), 32–78 | DOI | MR | Zbl

[9] Chi-Wang Shu, “High-order ENO and WENO schemes for computational fluid dynamics”, High-Order Methods for Computational Physics, eds. Barth T. J., Deconinck H., Springer, New York, 1999, 439–582 | MR | Zbl

[10] Chi-Wang Shu, “High-order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD”, Int. J. Comput. Fluid Dyn., 17:2 (2003), 107–118 | DOI | MR | Zbl

[11] E. Oran, Dzh. Boris, Chislennoe modelirovanie reagiruyuschikh potokov, Mir, M., 1990 | MR

[12] Yu. I. Shokin, N. N. Yanenko, Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Sib. otd-nie, Novosibirsk, 1985 | MR | Zbl

[13] A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, J. Comput. Phys., 1983, no. 4, 49 | MR

[14] C. Debiez, Approximations decentrees a faible dissipation pour des problemes hyperboliques, INRIA Report 2811, Fevrier, 1996

[15] A. Jameson, Numerical Solution of the Euler Equations for Compressible inviscid Fluids, Numerical Methods for the Euler Equations of Fluid Dynamics, SIAM, Philadelphia, 1985 | MR | Zbl

[16] Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, Cleveland, Ohio, October 20–22, 2003, http://www.math.fsu.edu