Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2007_19_7_a4, author = {I. V. Abalakin and T. K. Kozubskaya}, title = {High accuracy scheme for solving nonlinear aeroacoustics problems on unstructured meshes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {56--66}, publisher = {mathdoc}, volume = {19}, number = {7}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2007_19_7_a4/} }
TY - JOUR AU - I. V. Abalakin AU - T. K. Kozubskaya TI - High accuracy scheme for solving nonlinear aeroacoustics problems on unstructured meshes JO - Matematičeskoe modelirovanie PY - 2007 SP - 56 EP - 66 VL - 19 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2007_19_7_a4/ LA - ru ID - MM_2007_19_7_a4 ER -
I. V. Abalakin; T. K. Kozubskaya. High accuracy scheme for solving nonlinear aeroacoustics problems on unstructured meshes. Matematičeskoe modelirovanie, Tome 19 (2007) no. 7, pp. 56-66. http://geodesic.mathdoc.fr/item/MM_2007_19_7_a4/
[1] C. K. W. Tam, J. C. Webb, “Dispersion-relation-preserving finite difference schemes for computational aeroacoustics”, J. Comput. Phys., 107 (1993), 262 | DOI | MR | Zbl
[2] C. Bogey, C. Bailly, “A family of low dispersive and low dissipative explicit schemes for flow and noise computations”, J. Comput. Phys., 194 (2004), 194–214 | DOI | Zbl
[3] D. Gottlieb, E. Turkel, “Dissipative two-four methods for time-dependent problems”, Math. Comput., 30:136 (1976), 703–723 | DOI | MR | Zbl
[4] R. Hixon, E. Turkel, “Compact implicit MacCormack-type schemes with high accuracy.”, J. Comput. Phys., 158:1 (2000), 51–70 | DOI | MR | Zbl
[5] A. I. Tolstykh, Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR
[6] R. Hixon, “Prefactored small-stencil compact schemes”, J. Comput. Phys., 165:2 (2000), 522 | DOI | MR | Zbl
[7] J. A. Ekaterinaris, “Implicit, High-Resolution, Compact Schemes for Gas Dynamics and Aeroacoustics”, J. Comput. Phys., 156:2 (1999), 272–299 | DOI | MR | Zbl
[8] C. Shu, S. Osher, “Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, II”, J. Comput. Phys., 83:1 (1989), 32–78 | DOI | MR | Zbl
[9] Chi-Wang Shu, “High-order ENO and WENO schemes for computational fluid dynamics”, High-Order Methods for Computational Physics, eds. Barth T. J., Deconinck H., Springer, New York, 1999, 439–582 | MR | Zbl
[10] Chi-Wang Shu, “High-order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD”, Int. J. Comput. Fluid Dyn., 17:2 (2003), 107–118 | DOI | MR | Zbl
[11] E. Oran, Dzh. Boris, Chislennoe modelirovanie reagiruyuschikh potokov, Mir, M., 1990 | MR
[12] Yu. I. Shokin, N. N. Yanenko, Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Sib. otd-nie, Novosibirsk, 1985 | MR | Zbl
[13] A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, J. Comput. Phys., 1983, no. 4, 49 | MR
[14] C. Debiez, Approximations decentrees a faible dissipation pour des problemes hyperboliques, INRIA Report 2811, Fevrier, 1996
[15] A. Jameson, Numerical Solution of the Euler Equations for Compressible inviscid Fluids, Numerical Methods for the Euler Equations of Fluid Dynamics, SIAM, Philadelphia, 1985 | MR | Zbl
[16] Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, Cleveland, Ohio, October 20–22, 2003, http://www.math.fsu.edu